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ABSTRACT

Almanasia, Malik Amin. Modeling and Evaluation of Cache Coherence
Mechanisms for Multicore Processors. Master of Science Thesis, Department of
Computer Engineering, Yarmouk University, 2011 (Supervisor: Dr. Faruq Al-

Omari and Dr. Mohammad Al-Jarrah).

Multiple core designs have become commonplace in the processor marketplace,
and are therefore a major focus in modern computer architecture research. Thus, for both
product development and research, multiple core processor performance evaluation is a
mandatory step in marketplace. A well-known positive feedback property of computer
design is that we use computers of today to design more powerful computers for the
future. Thus, with the appearance of Chip Multi-Processors (CMP), it is more natural to
take advantage of its efficiency.

Multicore computing have presented many challenges for system designers; one of
which is data consistency between a shared cache or memory and the local caches of the
chip. This is also known as cache coherency. The cache coherence mechanisms are a
key component in the direction of accomplishing the goal of continuing exponential
performance growth through widespread thread-level parallelism.

In the scope of this research, we have studied the available efficient methods and
protocols used to achieve cache coherence in multicore architectures. These protocols

were further modeled and evaluated utilizing simics simulator for muliticore

architectures. We also investigated the weaknesses and strengths of different protocols

and discussed the way of improving them.

Key Words: Cache Coherence Protocols, Multicore, Snooping, Directory,
Token.
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Chapter 1 Introduction

Four Intel Corporation technologists have established multicore processors to
come to market after the turn of the 20" century, who forecasted the future through the
lens of Moore’s Law. This was in the 1989 issue of IEEE Spectrum, an article entitled
“Microprocessors Circa 2000” [1]. After fifteen years their predictions are verifying true
and multicore processor capability development have turned out to be one of the top

business and product initiatives for Intel and other companies.

1.1 Cache Coherence and Multicore

There is a great correlation between power and processor clock rate. When the
clock rate is enhanced, the power will also rise; after which, the temperatures will also
increase [2]. Multicore processors take advantage of this relationship by combining
multiple cores. Each core is able to run at a lower frequency. By splitting up the power
“provided to a single core” normally between all cores [3], the performance will
enhance, whereas the power and temperatures are still under control. Figure 1.1 shows
this main advantage and the significant performance enhancement over the single core

processor {2, 4].

Performence
(based of benchmarks)

Figure 1.1 Multi core performance compared to single core.[2]
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Also, multicore technology can improve system efficiency and application

performance for computers running multiple applications and multi-threaded programs

simultaneously [5, 6].

Computing has revolutionized society and worked as an engine of the world’s
economy. Much of this revolution is the result of the advent and incredible progress of
the low-cost microprocessor [7].

Enhancement of microprocessors is guided greatly by Moore’s Law, which has
forecasted that the number of transistors per silicon area will double every eighteen
months {8]. Computer architects are embarking on a fundamental shift in how the
transistor bounty is used to increase performance, while Moore’s Law is expected to
continue at least into the next decade [111]. Figure 1.2 illustrates the transistor count
has been doubling every two years.

Regarding multicore processors, cache coherency stands for the credibility of data
stored in each core’s cache. Multicore processors may contain distributed and shared
caches on the chip, so we should account for the coherence protocols to assure that
when a core reads from memory, it reads the current piece of data and not a value that

has been updated by a different core,
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Figure 1.2. Moore’s law for a number of IC intensities [8].

Cache coherence is considered to be one of the most important dilemmas in a
multicore environment due to distributed Levell(L1) and sometimes Level2 (L2)
caches. The copy of the data in any cache may not always be the most recent version,
as each core has its own cache. For example, consider a quad-core processor where
each core fetched a certain block of memory into its private cache. One core writes a
value to a specific location; when the second core tries to read that value from its cache,
it lmight not have the updated copy unless its cache entry is invalidated and a cache miss
occurs. This cache miss forces the updating of the other core's cache entry. If this
coherence policy wasn't present, garbage data would be read and invalid results would

be produced, this may lead to crashing the program or the entire system.
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There are two ways to deal with the cache coherency problems.
o Software Cache Coherence Schemes.

e Hardware Cache Coherence Schemes.

In the Software-Based Coherence, which is a straightforward method, shared data
are not cached [9]; this can be made by the operating system, the compiler, or the
programmer.

Hardware-Based Coherence ts one, which is enforced by snoop devices attached
to the cores and their caches. In this scheme, because caches are guaranteed to be
coherent, shared data can be cached, but a programmer must deal with the
synchronization of shared data [9].

In hardware-based cache coherency, there are in general two methods, a snooping
protocol and a directory-based protocol. The Snoopy cache-coherence methods require
sending information to all of cache controllers. However, if the number of cores
increases the cache messages will also increase, then the required bus, “which connect
the caches and all messages will pass through it”, bandwidth will be bigger than the
available one, and then a total saturation of the bus bandwidth would occur. These
techniques can be used in small-scaie systems due to this limitation.

On the other hand, the Directory-based protocol will scale to larger number of
processors or cores than the snoopy-based coherence protocol, since it enables multiple
coherence actions to take place at the same time [9].

Over the last 10 years, much work have been done to enhance cache coherency
performance, this has resulted in a number of new cache coherency protocols. Token
coherence protocol, is one of the most efficient new protocols.

The recently suggested Token coherence protocol [10, 11, 12] can remove the

constraint of directory indirection without sacrificing either the decoupling of the
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interconnection from the coherence protocol or the decoupling of coherence from

consistency. To resolve races without asking for a home node or an ordered

interconnection; Token coherence uses token counting. As will be discussed in details in

chapter four.

1.2 Desirable Cache Coherence Attributes

There are three critical attributes that have an impact on the performance of any

cache coherence protocol:
1. Low-latency Cache-to-Cache Misses

Many commercial workloads exhibit abundant thread-level parallelism, and thus,
using multiple processors or cores is a desirable method for enhancing their
performance [11]. To efficiently support the frequent communication and
synchronization in these workloads, systems are required to optimize the latency of
cache-to-cache misses {13]. A cache-to-cache miss is a miss frequently caused by
accessing shared data that requires another processor’s cache to provide that data. To
decrease the latency of cache-to-cache misses, a coherence protocol should ideally
support direct cache-to-cache misses. For example, snooping protocols support fast
cache-to-cache misses by broadcasting all requests to find the responder directly. On the
contrary, by placing a directory lookup and a third interconnect traversal on the critical
path of cache-to-cache misses, directory protocols indirectly locate remote data.

2. No Reliance on a Bus or Bus-like Interconnect

Unfortunately, snooping protocols depend on a bus or bus-like interconnect to
enable their fast cache-to-cache transfers. Such interconnects are not as good as with
two important technology trends: high-speed point-to-point links and increasing levels

of integration. As discussed below shortly, creating a bus-like or “virtual bus”
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interconnect demands it to give a total order of requests [11]. An interconnect gives a

total order if all messages are delivered to all destinations in some order. A total ordet
demands an ordering between all the messages (even those from different sources or
sent to different destinations). For example, if any processor receives message A before
message B, then no processor receives message B before A. Unluckily, creating a
totally-ordered interconnect that uses both of the two important technology trends
described below is infeasible using the traditional techniques. Because of that, protocols
depending on a totally-ordered interconnect—such as smooping protocols— are
unattractive, and protocols that do not depend on such an interconnect—such as most
directory protocols—are more desirable [11].

- High-speed point-to-point links.

Continued scaling of the bandwidth of shared-wire buses is hard due to electrical
implementation realities [14]. To overcome this limitation, some multiprocessor
systems replace shared-wire buses with high-speed point-to-point links that can provide
considerably more bandwidth per pin than shared-wire buses [15]. Many recent
snooping protocols use virtual bus switched interconnects that exploit high-speed point-
to-point links, even though; many early snooping systems depended on shared-wire
buses. These interconnects provide the bus-like ordering properties necessary for
snooping, often by ordering all requests at the root switch chip.

~ Higher levels of integration.

Moore’s Law predicted enhanced number of transistors per chip, this has
encouraged, and will continue to encourage, more integrated designs, making “glie”
logic (e.g., dedicated switch chips) less desirable. Many systems integrate processor(s),

cache(s), coherence logic, switch logic, and memory controller(s) on a single die (e.g.,
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AMD’s Hammer [16]). Connecting these highly-integrated nodes directly leads to a

high bandwidth, low-cogt, low-latency “olueless” interconnact [11].
3. Bandwidth Efficiency

Bandwidth efficiency is the third—and almost the least important at the time—
required attribute [11]. A cache coherence protocol should conserve bandwidth to
decrease the cost and avoid interconnect contention (since contention reduces
performance), but a protocol should not sacrifice any of the first two attributes for the
sake of obtaining this less-important third attribute, For example, an essay estimated
that, less than 10 systems contained 256 or more processors {~ 0.03%) of the 30,000
Origin 200/2000" [17] systems shipped, and less than 250 of the systems had 128
processors or more (~ 1%) [11]. No new multicore processors exceeded one hundred
cores per chip [18].
As exhibited in Figure 1.3, neither predominant approach to coherence captures all three
of these attributes: two are captured by directory protocols and TokenB while one is
captured by snooping.
Figure 1.3 exhibits the three required properties described in this section and which of
these attributes are supported by snooping (part a), directory protocols {part b), and
TokenB protocol (part ¢). Each triangle stands for a different protocol, and each vertex
accounts for a different attribute. The shaded portions of the triangle exhibits the
attributes illustrated by the corresponding protocol. As illustrated in this figure, the set
of these desirable attributes captured by snooping, directory, and Token protocols is

disjoint, because of that, neither protocol has all the required properties.

! Origin 2000, code named Lego, is a family of mid-range and high-end servers developed and
manufactured by SG! (Silicon Graphics, Inc.).
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Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficlent

Three desirable Attributes

1ow-lstency cache-to-cache misses Eow-latency cache-to-tache misses Low-talency cache-to-tache misses

A -

No bus-like jntarconnect Bapgwidt efficient  No bus-like interconnect Bandwidih efficient  No busike interconpect Bandwidth efficient

(a) Snooping Pretocols (b) Directory Protocols (c) TokenB

Figure 1.3 Characterizing Common Protocols in Terms of Three

characteristics [11].

Token-using-Broadcast (TOKENB) performance policy aims at capturing 1) Low-latency
Cache-to-cache Misses and 2) No Reliance on a Bus or Bus-like Interconnect at the
same time (i.e., avoid an ordered interconnect and provide low-latency cache-to-cache

misses). These two attributes are the most important of the three attributes, and aiming
at both of these attributes results in a low-latency, broadcast-based coherence protocol

that is suitable for applications with a glueless, point-to-point interconnect.
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1.3 Thesis Structure

This thesis begins with introductory chapter (Chapter 1) and continues with a chapter
that describes the fundamentals and background about multicore architecture and
memory caching (Chapter 2). We then describe and discusses the tools, methodology,
and workloads used for the evaluation and simulation of different systems (Chapter 3)
and continues with a chapter that describes the traditional cache coherence protocols
(Directory and snooping) in addition to TOKENB protocol (Chapter 4). And then we
evaluate each protocol and discuss the results (Chapter 5). The thesis ends with chapter

6 which concludes our work and gives directions for the future work.
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Chapter 2 Background and Motivation

2.1 Multicore Architectures

Chip Multiprocessor [19,20,21] refers to the technique of summing the power of
more than one core on one chip or die. The process of connecting multiple-cores is done
over a packet-based or bus-based network. Chip manufacturers are tending to
concentrate on the production of multicore chips, as their architectures allow the
computing of a number of tasks at the same time thus, enhancing the performance of the
system [22,23,24].

As the world is evolving into a more digitalized pattern and the constant growth of
performance, multicore architectures are presenting the computing technology with a
key development, Multicore architectures will prevail as the predominant computing
model for, they far exceed the performance and productivity benefits of single-core

processors.

2.1.1 Multicore Necessity

Numerous new applications are becoming multithreaded and the computer
architecture is turning its focus toward parallelism. This is because it is very hard to
enhance the performance of single core processors by increasing the clock frequencies,
let alone the probable difficulties such as heating or speed of light, if the frequency
exceeds certain ranges, the design and verification needs a large team as well.

The usage of packet based on-chip networks decreases the power dispersion so
that it provides the ability for other cores to operate (although in a decreasing fashion).

If one core fails, for they are completely independent, Multicore Architecture allows for
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hardware scalability and escalades software scalability [25]. Multicore Architecture also

supports hardware reuse thus, helping in decreasing time-to-market, increasing the
productivity and diminishing the cost [26].

The cache coherency circuit;'y functions at a much higher clock rate performed
over multiple CPU cores on the die than when signals travel off-chip.

The cache snoop operations are highly improved by combining counterpart CPUs
on a single die. By this, we mean that signals travel a shorter distance between variant
CPUs as so the signals will degrade less. The finer quality of signals allow for more
data sending in a given period of time as individual signals do not need duplication.

Multicore design makes best usage of the silicon die area; baring in mind that the
availability of the silicon substance is insufficient for the demand, thus, by using proven
core library designs to come up with minimal design errors compared to devising a new
wider core design. Adding additional cache as well produces the disadvantage of

diminishing returns [27].

2.1.2 Multicore Challenges

Multicore design is faced with many challenges, like any new design. These
challenges require identification and understanding. One of the main challenges facing
Chip Multiprocessors (CMPs) is the competition for shared resources. This challenge
forms a restriction bottleneck [28,29,30]. Some of the shared resources are: main
memory, bandwidth and capacity, cache bandwidth and capacity, memory subsystem

interconnection bandwidth, and system power. Listed below are the main challenges:

1.  Multicore architecture might escalade the complexity for designers and developers
for its parallel architecture of hardware and software. It is easier to manage lower
density single-chip designs' conduction of heat compared to multicore chips that

on their turn, generate lower returns on production [26].
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The architectural perspective concludes that a better usage of the silicon surface

area is obtained by single CPU designs, not multiprocessing core, risking the
extent of the development dedicated to this particular architecture. Last but not
least; raw processing power is the only, but one of, the obstacles facing system
performance. The real world performance advantage is constrained by sharing
the same system bus and memory bandwidth between the two processing cores.
Dual core improvement is limited between 30% and 70% if a single core is close
to being memory bandwidth limited, On the other hand, an improvement of 90%
is expected if memory bandwidth is not an issue. More than 100% improvement
is accounted if an application that used two CPUs operated at a faster level on
dual core due to the limiting factors in communication between the CPUs [27].

The concurrency principles are not fully accustomed by today's designers,
developers, and test engineers. These principles are difficult to absorb and, as a
result, the time for product development is increased as the development teams
will have to be retrained [31]. Existing software modifications are mandatory as
well as operating system support (OS). Moreover, multicore processors’ ability to
enhance application software performance is bound fo the application usage of
multiple threads. For example, a present-day PC operates faster on a 3 GHz
single-core processor than on a 2 GHz dual core (of the same core architecture),
regardless of the theoretical assumption that dual-core processors obtain more
processing power, because of their incapability of seizing more than one core at a

time in an efficient manner.

Many issues need to be considered by developers like Processor synchronization,
latency, and speed gap, Bandwidth requirements, while transmitting data over

network, and program partitioning issues [32].
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4. Throughout a debugging session; deadlocks, livelocks, and data corruption are

difficult to trace, as they are discontinuous. Furthermore, the pluralities of the

current high-level languages are non-supportive for concurrent programming.

2.1.3 Multicore processor vs. Multiprocessors

Multicore processor derives from the family of multiprocessors with the
significant difference of the gathering of all the processors on the same chip. Compared
to multiprocessors, multicore processor is a better option for its low design complexity,
high clock frequency, and high throughput.

Multicore processors differ for théir Multiple Instructions Multiple Data (MIMD)
as the various cores execute different threads (Multiple Instructions), operating on
multiple parts of memory (Multiple Data). In fact, the same memory is shared among all
cores as so, multicore is a shared memory multiprocessor.

While multi processors are multiple chips that are plugged into the motherboard
and therefore allocate an unshared cache for each chip, multicore processors have more
than one core with the ability to execute processing on one chip, normally by allocating
an unshared L1 cache for each core and the sharing of L2 and/or L3 caches.

Communication of data among processors in the current shared-memory
multiprocessors may vary from 50 clock cycles (for multicores) to more than 1000
clock cycles (for large-scale multiprocessors) thus, affected by the communication
mechanism, the type of interconnection network, and the scale of the multiprocessor.
The impact of such delay in long communications is of obvious significance [33].

Multiprocessors contain one large and fast superscalar core that performs greatly
on a single thread, although, still exploits instruction level parallelism exclusively. On

the other hand muiticore obtain many cores each is smaller comparatively less powerful
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(although easier to design and manufacture) still, highly capable with thread level

parallelism.

The multicore CPU uses a smaller Printed Circuit Board (PCB) than multi-chip
SMP designs that, if we hypothetically assumed that the die can be physically placed in
the package. Moreover, the power consumption of a dual-core processor is somewhat
less than two single-core processors combined; hence, the power needed to drive signals
external to the chip, and as cores are able to operate at lower voltages on a less silicon
process geometry, as a result to such reduction, the latency is reduced. Furthermore,
some circuitry is shared between cores such as: the L2 cache and the interface to the

front side bus (FSB) [34,35].

2.1.4 Multicore Commercial examples

The first on-chip multiprocessor for the computing market of the general purpose
was presented in the year 2000 by IBM. Followed in the year 2005 by AMD that
presented the two processor versions for the server market. In the end of the year 2007
and early 2008, the kickoff quad-core and triple-core processors were introduced,
whereas an 8-core chip for computer-farm application was produced by Sun in 2006. On
the 20th of August 2007 however, Tilera gave off its 64-core processor.

Intel also released its two-processor versions in 2005 for the server market; its
quad core processor was presented on Dec 13, 2006. Within the coming years, Intel is

expected to release its 80-core processor prototype, each running at 3.16GHz[36].
2.2 Memory Caching in Multicore Systems

Cache memory is defined as a specific memory subsystem whereas data of
persistent usage is stored for fast access. The frequently accessed upper memory level

locations and addresses of the data items are stored in the memory cache. The cache
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checks to see if the addresses referenced by the processor in memory are held in that

address, so that if they are, the data is returned to the processor, if not; an ordinary
memory access takes place. A cache is of use when microprocessors' speed exceeds the
RAM accesses' speed, for cache memory is ever faster than main RAM memory [32].
Memory cache levels are divided into three types: I) Level I cache (L1) is a
small, fast memory cache contained in each core as it helps increase the access speed to
the frequently-used data; 2) Level 2 cache (L2) is of a bigger size than L1 and is built
into the microprocessor chip and occasionally between the microprocessor and the main
memory; and 3) Level 3 cache (L3) is a combination of fast, built-in memory chips
located between the microprocessor and the main memory, although not found in all

MA designs[37].

2.2.1 Cache necessity and it’s work principle

At this point, a question is raised "Why can't we speed up the entire computer's
memory to match the speed of the L1 cache, and therefore eliminate the need for cache
memory?" The answer to such question would be: speeding up the entire memory is a
reasonable solution, but it would be extremely expensive. Caching is used to increase
the speed of large amounts of slow, affordable memory by using a small amount of
expensive memory [38].

The goal of designing a computer is to permit the microprocessor to run at its
most speed with the least cost possible. A 500-MHz chip runs 500 million cycles per
second (one cycle every two nanoseconds). The main memory would need 60
nanoseconds, or we would waste 30 cycles in accessing the memory without the usage
of L1 and L2 caches [38].

It is somewhat astonishing that such comparatively micro amounts of memory

allows for the magnification of much larger amounts of memory. Consider an L2 cache
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of 256-kilobytes enabling the caching of 64 megabytes of RAM. If so, 64, 000, 000

bytes are cached efficiently using 256, 000 bytes [38]. This is justified by the computer

science principle "locality of reference”, Indicating that only small portions of a code is
mostly used at the same time, even with great programs of several megabytes of
instructions. Programs often spend large periods of time repeatedly working in one
small area of the code, mostly repeating the same work many times redundantly with
barely any different data, shifting afterwards to a different area. "Loops" are the reason
behind this, as they are what programs use in order to work many times in rapid
succession [39].

The cache is programmed (in hardware) to save the recently-accessed memory
locations in case of later necessity. After being loaded for the first time from the
memory, instructions are saved in the cache. Next time the instructions are needed, the
processor checks the cache first, to see if the needed instructions are available, and
directly loads these instructions from cache and not from the slower system
components; RAM. The function of the caches design and size are what determines the

number of instructions buffered by this method.

2.2.2 Private vs. Shared caches

Shared L2 caches are used by a group of CMPs in order to magnify the on-chip
cache capacity and to minimize off-chip misses. Some use private L2 caches as to
replicate data in order to limit the delay caused by global wires and to minimize cache
access time. However, recent hybrid proposals balance latency and capacity using
selective repfication, on the other hand, their static replication rules cause a degradation
in performance for some combinations of workloads and system configurations {40].

The occurrence of Chip Multiprocessors in mainstream systems forces them to

provide a variety of workloads with a reasonable performance. In order to confront the
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interfering requests of reducing off-chip misses (capacity) and handling slow global

wires (latency) in partioular, Level-2 (L2) cache management brings forward a main
challenge. The IBM Power 5 [41] and Dun Niagara [42] of the existing CMP systems
use shared L2 caches (Figure 2.1a illustrates shared caches in CMP) to prevent
replication in order to maximize the on-chip capacity. Although the cross global wires
to reach distant L2 banks, many requests causes them to have higher access latencies. In
contrast, private L2 caches (Figure 2.1b illustrates private caches in CMP), reduce
average access latency by replicating data close to the requesting core, but sacrifice

effective capacity and incur more misses [43,44].
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Figure 2.1 CMP Shared and Private L2 Caches.

2.3 Cache Coherence Protocols

2.3.1 The cache coherence problem

Storing frequently accessed data in faster memory caches provide a more
enhanced performance. More than one core is enabled to cache an address (or data item)
simultaneously being that the same address space is shared by all cores. Although, many
other elements of great importance are to be taken into consideration when using cache
memory in a multicore environment, to be precise, preserving the right copies of data in

all caches in the system. Inconsistencies can occur and incorrect executions may take
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place as a result of updating a data item by a single processor without informing the

remaining processors.

More than one copy of the same data may be kept by multiple caches in a
multicore system; therefore, inconsistency between caches may take place as well as
inconsistency between the main memory or upper cache levels and the private cache. A
complication only exists if individual processors alter their copies of data, because
shared data copies should be kept identical for correct operation. Maintaining the data in
all the caches the same is known as cache coherence. The phrase cache consistency is
also used.

The cache coherence problem is illustrated in Figure 2.2, which illustrates a
shared L2 cache by four cores with private caches via a bus. The cores access location
X sequentially. At the beginning, corel brings a copy to its cache by reading X from L2
cache. After that, core 4 brings a copy to its cache by reading X from L2 cache.
Thereafter core 4 changes X's location value from 8 to 5. With a write-through cache,
causing the L2 cache location to be updated, but in (action 4) when corel reads location
X again, it will read the old value 8 from its own cache rather than reading its correct
value 5 from L2 cache.

The writeback caches complicates the situation even further. Core4's write would
not update L2 cache right away; instead, it would barely set the dirty (or modified) bit
concerned with the cache block holding location X. Contents of cache block would be
written back to L2 cache solely, when this cache block is subsequently replaced from
the cache of core 4. The reading of the old value is not inclusive to corel. Furthermore,
core2 and core3 will miss in their caches when reading location X (éctions 5 and 6) by
reading the old value 8 instead of 5 from L2 cache. Last but not least, if more than one

core write different values in their write-back caches to location X, the last value that
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will reach the L2 cache will not be related to the sequence in which the writes to X

occurred. Instead, it will be determined by the sequence in which the cache blocks that

contain X are replaced.

Figure 2.2 cache coherence problem

Coherence between the caches has to be enforced in order for correct execution.
This process is affected by two main factors: Performance and implementation costs. In
the process of designing a cache coherence mechanism, four main issues must be taken
into consideration as well: 1) Coherence detection strategy- How possible incoherent
memory access is detected by the system, 2) Coherence enforcement strategy- How to
change cache entries in order to assure coherence (i.e. Updating or invalidating), 3)
Precision of block sharing information- How sharing information and cache and
memory blocks are stored and cache block size, and finally 4) the size of line in the
cache and how the performance of the system is affected by it [45].

The cache coherence protocol comprises an absolute design choice for multicore
and multiprocessor systems as it directly influences the overall system performance.
Many system elements can influence the general performance to various certain levels
thus reckon the selection of coherence protocols and the target application workloads,
some of which are: the maximum achievable bandwidth (in snoop-based protocols) and

network transactions number (in directory based protocols). Thorough evaluations over
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the past decades have been made on the coherence of protocols since their

commeneement,

2.3.2 Basic Operation of Cache Coherence Protocols

In order to assure coherence invariant, coherence protocols track read and write
permissions of clocks held by processor cores caches by using the protocol states. The
states providing a set of common states in for reasoning about cache coherence
protocols are described in this section, most common protocols apply these states such
as MSI (Modified, Shared, and Invalid), MESI (Modified, Exclusive, Shared, and
Invalid), MOSI (Modified, Owned, Shared and Invalid) and MOESI (Modified, Owned,
Exclusive, Shared, and Invalid).

Firstly; the Modified, Shared and Invalid states are taken into consideration all
implanting the MSI protocol. When a process is signified as it may neither read nor
write, it then has a block in the Invalid or I state. Implicitly, a block is considered to be
in the invalid state in the cache when it is not found in the cache. When a processor can
read the block, but cannot write it, it's then considered to be in the Shared or S state. The
Modified state or M state of a processor indicates that a processor can both read and
write the block. To directly implement the coherence invariant, the three states of
(Invalid, Shared, and Modified) are used through (a) permit only one processor at a time
to be in the Modified state, and (b) forbid all other processors to be in the Shared state
when one processor is in the Modified state at a certain point in time f11].

Replacing or victimizing occurs when a processor must evict a block currently
held in the cache when demanding a new block. Two factors impact on the effort
needed to evict a block; the coherence state of the block and the specific protocol. e.g.
while evicting blocks in the Modified state, most protocols demand a data writeback to

memory and permit a discrete eviction in the Shared state. If a protocol permits a
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processor to evict blocks in the Shared state without sending a message, it is then

considered to support silent evictions. If protocols require sending a notification

message (although not the entire block) to the upper memory level in the Shared state,
then they do not support silent eviction.

Much like the Shared state, the optional Owned or O state in a processor's cache
allows read-only access to the block, while indicating that the main memory's value is
incoherent or old. Hence; before evicting a block, the processor in the Owned state must
update the upper memory level. Only one processor at a time is permitted to be in the
Owned state, just like the modified state. Other processors, though, are permitted to be
in the Shared state when one processor is in the Owned state unlike the Owned state
[11].

Subtending the owned state provides two main advantages:

First: Reducing system traffic hence, the Owned state does not ordain a processor while
transitioning from Modified to Shared when in a read request to update memory. A
protocol, not including the Owned state, requires the responder to provide data to the
requester and updating memory (illustrated in Table 2.1} when transitioning from
Modified to Shared. The addition of the Owned state permits a processor to transit from
Modified to Owned state without sending a message to the memory at that time
(1llustrated in Table 2.1). A reduction of memory traffic occurs if another processor
issues a write request for the block before it is evicted from the Owned processor's

cache.

Second: in some protocols (e.g., systems based on IBM's NorthStar/Pulsar processors) a
processor can respond more quickly by providing data from its SRAM cache than the
home memory controller can respond from its DRAM. In order to enable this

enhancement, a suitable mechanism for selecting a single responder is provided by
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giving the processor in the Owned state the farther responsibility of responding to

requests for data. On the other hand, a response from memory 1n other protocols (e.g.,

most directory protocols) is considerably faster than providing data from an Owned
copy. The Owned state is not applied in these systems (preferring less latency for

additional traffic).

The last state is the Exclusive or E state. The Exclusive state and the Modified
state have many similarities, but differ in that the Exclusive state implies the contents of
memory match the contents of the exclusive block. As a result to differentiating
between the clean Exclusive state and its corresponding Modified dirty state, the need to
update the block at the home memory when a block is evicted in Exclusive is
eliminated. The memory responds to a read request with a clean-data response as long

as there is no other processor caching the block. The duty of updating the memory is

removed when the requesting processor transitions to Exclusive, granting it read/write
permission to the block. By silently transitioning from Exclusive to Modified
(demanding a writeback upon subsequent eviction), the block is then written fast
without an external coherence request. Figure 2.3 illustrates the basic operations of

MOESI states.
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Figure 2.3 The basic operations of MOESI states.
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2.3.3 Hardware Protocols

< Hardware protocols are divided into two primary groups: Snoop Bus Mechanism
& Directory Based Method. Token protocol is also considered as another efficient
protocol implemented by Milo M. K. Martin [11] for multiprocessor. Chapter 4, 5 and 6

describe these methods in further details,

2.3.3.1 Snoop Bus Protocols

Snooping protocols obtain coherence depending on a shared bus between the
processors. On a processor write, the write is passed to the main memory via a bus
passing through the cache. Updating or invalidating the cache entry appropriately is
possible to any processor caching the address. Although, the Snooping protocols'
disadvantage is that they are incapable of scaling well beyond 32 processors due to the
shared bus.

The transactions in this method are observed and all memory write operations are
monitored by a bus watcher unit built-in each processor/cache. (CH4 describe Snooping

protocols in More Details).

2.3.3.2 Directory-Based Protocols

Unlike snoopy based protocols Directory based protocols do not exchange
coherence information using a shared bus. Directory bascd protocols are of better
scalability (might posses hundreds of cores per chip). According to this method, each
core might obtain its own memory and, for efficiency, generally weak consistency is

applied.
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Systems of point-to-point unordered networks usually implement directory-based

cache coherence protocols. Although cache miss latencies may be increased by these
protocols as they propose indirection o import coherence information from the
directory (usually on chip as a directory cache). Chapter four describes Directory

protocols in More Details.

2.3.3.3 Token Protocols

Token based protocols are assumed to combine the best features of both snooping
and directory protocols: low-latency cache to cache misses and not depending on
totally-ordered interconnects. Token Coherence [12] is é framework suggested in order
to facilitate the development of token based cache coherence protocols. Three
components comprise the Token Coherence: the faken counting mechanism; assuring
the coherent reading and writing of data. The persistent request mechanism; solves
protocol races and prevents starvation. These two mechanisms form the correctness
foundation in order to assure correct operation in the different cases. On the other hand,
the third component, which is Performance policy, is used to make the protocol fast and

bandwidth efficient. More details about Token Protocol are discussed in chapter four.

2.3.4 Compiler and Software protocols
Software protocols impose consistency with limited hardware support depending
on the compiler or specialized software handlers. They are somewhat comparable to
Distributed Shared Memory (DSM) systems but a lower level such as: sharing, usually
in blocks not pages, the need for more efficiency to obtain better performance and
architecture support for sharing. We just focus on the hardware coherence protocols.
Software protocols can be classified in accordance to many criteria[45]). The most

important criteria are:
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e Dypamism: compile-time or run-time analysis

e Selectivity: level of coherence actions

* Restrictiveness: conservative or as-needed consistency enforcement

e Adaptivity: can protocol adapt to access patterns

o Granularity: coherence data size and structure

¢ Blocking: program block on which coherence is enforced
e Positioning: position of coherence instructions

e Updating: how memory is updated after a write

¢ Checking: how incoherence is detected

2.3.4.1 Software Coherence with Limited Hardware Support

According to this approach, a consistency code must be generated by the compiler
for, there is no hardware coherence provided. Time tags are kept in the hardware and
are updated on every write. In order to ensure data consistency, the compiler while on a
read generates coherence read that screens time tags. The hardware's duty is to preserve
tags while it’s the compiler's duty to detect inconsistent reads. Using tags, also allows
for performing dynamic self-invalidation of blocks. A number of techniques are based
on using these time tags.

Petersen and Li have developed a special algorithm if the hardware has no time
tag, as it only uses page translation hardware and page statues table [112]. According to
this algorithm, a page handler at the page-level is in charge of maintaining the sharing
of information. In the case of page access or fault, the sharing of information, updating

page table and performing coherence actions is the software handler's duty. Software
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handlers are slower than hardware for they are limited by the memory access paths and

bound to the OS [45].

2.3.4.2 Enforcing coherence by Restricting Parallelism

Structuring the language, in order to limit parallelism, is another way compilers
use to assure coherence. Using this method, enforce coherence are easier to enforce.
Moreover; a limit is forced upon the programmer and potential parallelism. However;
no hardware support is needed to attain well performance and it simplifies the compiler
design. Do all parallel loops, as well as, master/slave processes are contents of parallel

language restrictions[45].

2.3.4.3 Optimizing Compilers

Optimizing compilers are designed in order to maintain coherence of limited
hardware support, and at the same time, not limiting the programmer too much. Thus,
depending on detecting data dependencies, probably using synchronization variables
(locks, barriers), might provide hints to the hardware, able to detect the need for
coherence, dynamic sharing problems are also probable. Overall; providing good

performance, but difficult to design [45].

2.4 Literature Review and Related work

This section presents some related work on existing cache coherence techniques.

The scope and the amount of related work are large, so we focus on the aspects most

fundamental and related to the research in this thesis.
Snooping coherence on a bus was first described by Goodman [56]. Early bus

implementations used electrically shared wires that held the bus for an entire coherence
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transaction. But more modern snooping systems implement a logical bus using

additional switches, state, and logic rather than shared electrical wires.

Barroso et al. [113] examined snooping on a ring and proposed an approach that
Michael Marty [111] generalize and call greedy snooping. The primary commercial
systems using ring-based coherence, the IBM Powerd/5, also uses a greedy-like
snooping protocol for coherence on a ring [114]. A greedy snooping protocol broadcasts
coherence requests to all other nodes in the system. While a ring naturally
accomplishes the broadcast operation, there is no total ordering or atomicity.
Therefore, unlike the bus protocol, a requestor cannot be assured that its coherence
request is ordered once the message is transmitted and racing (or conflicting) coherence
requests must be handled differently.

A directory protocol contains state about the sharing status of a given block to
determine the actions needed when a coherence reqﬁest is received. A typical directory
includes a list of sharers for each block, and a field that points to the current owner. A
directory can also take other forms, such as a linked list of sharers [101], or shari?‘ng
lists at a coarser granularity than single processor-cache nodes [98]. Directory-
based cache coherence was first suggested by Tang [85] and Censier et al. [84].
Examples of commercial machines using directories include the SGI Origin [17] and the
Alpha 21364 [67].

The previous techniques to coherence, snooping and directory, both require the
careful coordination of message exchanges and of state-machine transitions to ensure
the coherence invariant. The properties of the interconnect also further complicate the
design of the protocol to ensure the invariant. A technique proposed in 2003, token
coherence, directly enforces the coherence invariant through a simple technique of

counting and exchanging tokens.
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Token coherence [12] associates a fixed number of tokens with each block. In

order to write a block, a processor must acquire all the tokens. To read a block, only a
single token is needed. In this way, the coherence invariant is directly enforced by
counting and exchanging tokens. Cache tags and messages encode the number of tokens
using Log?2N bits, where N is the fixed number of tokens for each block.

Token coherence enables a broadcast protocol on an unordered interconnect as
well as others described in Martin’s thesis [11]. The TokenB broadcast protocol has
some similarities to the greedy snooping approach and a few key differences. In
TokenB, coherence requests are broadcast directly from the requesting processor to all
other processors like greedy snooping. Unlike greedy snooping, only processors sharing
the block must respond with an acknowledgement message. However in TokenB,
conflict is not explicitly detected because a snoop response is not received from
every processor. Therefore, TokenB uses a per-request timer that is used to issue
retries or to invoke a persistent request upon timeout.

Many work have been done through the last years to evaluate and propose an

efficient cache coherence protocols; but no one model the Snooping, Directory, and

~ Token protocols on the multicore architecture and evaluate them using meaningful

performance metrics as we did in this thesis.
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Chapter 3 Evaluation Methodology

The objective of evaluation is to explain the relative behavior of different
coherence protocols (traditional protocols and Token Coherence based protocols). We
aim not to (1) Generate ultimate execution times or throughput rates for our simulated
systems or (2) Evaluating such protocols on all of the future's system configurations.
We use an approximation of a chip multiprocessor system in order to accurately obtain
relative comparisons and evaluations instead. Full system simulation and modeling of
the first-order timing effects for approximating an aggressive multicore system
operating commercial loads are the means to reach such an aim. Our goal is to get the
first-order effects, although —similar to most architectural simulations- Capturing all

system's aspects in precise detail is not what we try to do.

3.1 Simulation Tools

In order to evaluate the demand system; full-system simulation is used. Using full
system simulation allows for evaluating the proposed systems when running realistic
scientific applications on top of actual operating systems. As well as capturing the
subtle timing effect that can't be captured with trace-based evaluation.

The Simics full-system multiprocessor simulator [46] extended with the
Wisconsin GEMS simulation environment [47] is used in order to perform the analysis.
Simics is a system-level architectural simulator developed by Virtutech AB [46] with
the ability to operate unmodified commercial applications and operating systems.
Simics only provides an interface equipped by GEMS as to support the memory
hierarchy model. GEMS is a set of modules that extends Simics with timing fidelity.
Two primary modules make up GEMS: Ruby and Opal. Ruby models memory

hierarchies and uses the SLICC domain-specific language to specify protocols. Opal
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models the timing of an out-of-order SPARC processor. The relation between the
Simics simulator and GEMS toolset is illustrated in Figure 3.1.
3.1.1 Simics Simulator

An overview of the simulation tools used is illustrated in Figure 3.1. Simics is

found on the top. Simics is defined as a full functional system simulator enabling the

booting of an unmodified operating system thus in order to execute actual applications.

&
v ]
h‘- & chmfonchmﬂt

\

Figure 3.1 A view of the GEMS architecture with simics simulator [47].

A simple in-order processor is modeled in Simics. Simics uses Ruby in order to
pass all the load and store instructions and the instruction fetch requests. Determines, if
the operation hits or misses, thus by performing the cache access. In the case of a hit,
instructions are executed normally by Simics. But in the case of a stall, Ruby simulates
a cache miss only after stalling Simics' request from the issuing processor. The request
completion is determined by contention, latency of messages, and other factors. Ruby
determines the timing-dependent functional simulations in Simics by controlling Simics'

advancing time.
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3.1.2 Ruby Module

Ruby is found under Simics, as it is a module used to protocol-independent
components (cache arrays, memory arrays, message buffers, and assorted glue logic) as
well as protocol-dependent components (cache controllers and memory controllers).

To simulate timing, Ruby takes on a queue-driven event model. Message buffers
are in charge of communicating cache controllers and memory controllers. The recipient
is scheduled to wake up as soon as the next message becomes available to read from the
buffer.

Ruby solves the miss in the case of a cache miss by generating the events required
by the implemented protocol. When an exchange of messages is implied by an event
through the network, the messages are stalled in the message buffers and their
transmissions are simulated in details in the network simulator upon their arrival. A

wake up is scheduled as soon as the message arrives to the recipient component.
3.2 Performance Metrics

Throughout this research, we demonstrate how the overall performance of our
proposals by the runtime i.e. measuring the time necessary to complete certain amount
of work. The metric instructions-per-cycle has been used by other works instead of
runtime in judging performance improvements. However; system timing effects of
multiprocessor workloads may alter the number of instructions executed therefore,
Instruction Per Cycle (IPC) is not a suitable metric for evaluating the coherence
protocols and systems. Thus the performance of the system is not guaranteed to be
reflected by measuring IPC and running the simulator for a specific number of
instructions [48]. This is due to the magnificence of the variation in the instruction path

of multithreading workloads that run on multiple processors.
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Runtime is used to conclude that “protocol A is X % faster than protocol B” using

the formula:

runtime(B) _ .
runtime(A) L O) *100. Equation #1

The measurement is started at the parallel phase so that we avoid measuring
thread forking. Until now, a full system checkpoint (to provide a well-defined starting
point) is used to initialize the system state and to simulate the execution until the end of
the parallel phase. The number of cycles is recorded and referred to as application time
in order to complete the parallel phase.

Endpoint traffic (in messages per miss) and interconnect traffic (in terms of bytes
on interconnect links per miss) are other ways besides reporting runtime that measure
and report the traffic. The endpoint traffic shows the amount of controller bandwidth
needed for handling incoming messages. The amount of link bandwidth used by the
messages are indicated in the interconnect traffic as they traverse the interconnection.

The last metric is mostly not bound to the particular interconnect and message
size. On the contrary, the interconnect topology, the use of bandwidth-efficient
multicast routing, and message size are what influence the last metric.

Due to the computational intensity of detailed architectural timing simulations, we
are limited to simulating only a short segment of the workload’s entire execution. Two
techniques are used to subdue such limitations and partially overcoming this problem.
At the beginning, system cold-start effects are avoided by warming up and check
pointing all workloads, and restoring the cache contents captured as to assure the
warming of caches all as part of our checkpoint creation process. Second, the approach
of simulating each design point a number of times as to address the variability in
commercial loads, this is done by small, pseudo-random perturbations of request

latencies [49, 50]. These perturbations cause aliernative operating system scheduling

33



© Arabic Digital Library - Yarmouk University

paths in deterministic simulations. A distribution of runtimes is created by operating

many of these pseudo-randomly perturbed systems. The reduction of the effect of the
skewed nature of the distribution is possible by eliminating all data points beyond 1.5
standard deviation from the mean. Error bars in our runtime results approximate a 95%
confidence interval centered on the arithmetic mean of the remaining data points.[11]

Every data point is approximately the aggregate of 5 to 15 data points; a large number

of simulations are used for configurations and workloads exhibiting the most variation.

3.3 Workload Descriptions

We used three multi-threaded commercial workloads from the Wisconsin
Commercial Workload Suite [49]: an online transaction processing workload (OLTP), a
Java middleware workload (SPECjbb), and a static web serving workload (Apache).
The previously mentioned workloads operate on a simulated 16-core SPARC processor

that runs Solaris 9. The simulated system has 4GBs of main memory.

Online Transaction Processing (OLTP): The OLTP workload is built on a TPC-C
v3.0 benchmark with 16 users/processor and no think time. IBM’s DB2 v7.2 EEE
database management system formalizes the back-end and is responsible for almost all
of the activities in this workload. The users query a 5GB database with 25,000
warehouses stored on eight raw fiber-channel disks. The database logic is also stored

on the disk. The system is warmed up with 100,000 transactions and the hardware

caches are warmed up with additional 500 transactions.

Java Server Workload: SPECjbb. SPECjbb2000 is a server-side Java benchmark
modeling a 3-tier system, its primary focus is on the middleware server business logic.

Sun’s HotSpot 1.4.0 Server IVM drives the benchmark. The experiments use 1.5 threads
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and 1.5 warehouses per processor. However; we use over 2 million transactions to warm

up the system and 100,000 transactions to warm up simulated hardware caches.

Static Web Content Serving: Apache. Apache 2.0.43 configured is used as to obtain a
hybrid multi-process multi-threaded server model with 64 POSIX threads per server
process. The web server is SURGE driven with 3200 simulated clients each with a
25ms think time between requests. Apache logging is disabled to maximize server
performance. We use 800,000 requests to warm up the system and 1000 requests to

warm up simulated hardware caches.

3.4 Modeling a CMP with Simics/GEMS

This section is dedicated to describing how GEMs are used to model CMP
memory systems in this thesis. Like most simulation, some components are realistically
modeled and some idealized. Qur goal in this evaluation is to validate designs and to
give insights into the relative merits of a subsystem studied and not to simulate realistic
or absolute runtimes for all future CMPs.

We aim to capture first-order effects of coherence protocols, such as all the
messages needed in order to implement the protocol at certain interconnect. Most of the
idealized components of the simulator are expected to impact on all protocols in the
same way, or else the designer has to compensate the design dependant subsystems in
order for them to match the given protocol. e.g., if a protocol requires that a cache snoop
X tags/cycle, then the designers would engineer this ability into the implementation.
Whenever necessary; these events are measured and their counts are reported even if

they do not affect the simulated runtime.
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At first, many controllers are connected via networks in a specific topology as to

formalize the CMP memory model. L1 Caches interface processor models. After that

L1 caches interact with other controllers (i.e., directory/memory controller) and model
the timing of an L1 miss by interconnecting links. Timing is usually modeled by a
controller that specifies the delay when a message is injected into the network, and
delay incurred by modeling the delivery of the message.

Following are details of how the main components of the system are modeled:

3.4.1 Simulated System

A multicore server is simulated while running commercial workloads and using
multiple interconnects and coherence protocols thus, evaluate Cache Coherence
Protocols. The system we target is a 16-core processor SPARC v9 system with highly
integrated nodes each including a dynamically-scheduled processor, split first level
instruction and data caches, unified second level cache, coherence protocol controliers,
and a memory controller for part of the globally shared memory. Sequential consistency
is implemented in the system by using invalidation-based cache coherence and an
aggressive, speculative processor implementation 51, 52].

We select a variety of coherence protocols, system interconnects, latencies,
bandwidths, cache sizes, and other structure sizes. The parameters for the memory
system and the processors are listed in Table 3.1. We limit the bandwidth of memory
controllers and cache controllers; which limit the bandwidth that is caused by external
requests for the DRAM, cache tag arrays, and cache data arrays indirectly. We also

apply simulation both with unbounded interconnect link bandwidth and interconnects
with 4GB/sec links. By these two types of simulations, we are able to distinguish

between changes in uncontained latency and changes in latency due to interconnect

bandwidth constraints.
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Table 3.1 Simulation Parameters

Coherent Memory System Parameters

Private L1 Caches

Split 1&D, 64 KB 4-way set associative, 64-byte line, 1ns latency

(2 cycles)

L2 unified cache

size and latency

4MB, 6ns latency (12 cycles)

main memory size

and latency

4GB, 80ns (160 cycles)

interconnect link 4GB/second or unbounded bandwidth 15ns latency (30 cycles)
Calculated Average Miss Latencies
Interconnect hop 68ns (136 cycles)

memory-to-cache

=1.2 miss(6) + 2 hops(2 x 68) + mem(80) = 222ns (444 cycles)

direct cache-to-cache

=1.2 miss + 2 hops + cache(6) = 148ns (296 cycles)

indirect cache-to-

cache

= L2 miss + 3 hops + directory(DRAM=80,SRAM=6) + cache
DRAM directory = 296ns (592 cycles)

SRAM directory = 222ns {444 cycles)

After that, we describe the coherence protocols and system interconnection:

3.4.2 Coherence Protocols

Using a few distinct MOESI coherence protocols the simulated systems are

compared. The migratory sharing optimization [11], is applied to protocols to improve

their performance, the upgrade requests are not supported by any protocols. Coherence

is kept at on aligned 64-byte blocks. All request, acknowledgment, invalidation, and

dataless token messages are of the size 8-bytes (including the 40+ bit physical address

and token count whenever necessary); data messages include the 8-byte header and the
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64 bytes of data. These message sizes do not include any extra bits used by the

interconnect to detect and correct bit errors. Three main protocols are used: Snooping
(an aggressive snooping protocol described in Section 2.3.3.1), Directory (a traditional
directory protocol described in Section 2.3.3.2), and Token (an optimized version of a
protocol that migrate and improve Snooping and directory protocols described in

Section 2.3.3.3).

3.4.3 System Interconnects

The same GEMS' are used in the networking model as to approximate all of the
target interconnection networks. For each target CMP, a specific network topology is
specified using a configuration file. The links between network switches and the
endpoints of the interconnect are determined by the file. Fix latency and bandwidth
parameters are the specifications of each link since GEMS does not model the
characteristics of links at the lower network levels. The latency specified and other
queuing delay resulting from insufficient bandwidth, are always incurred in a message.

Whenever convenient, the following chapters will elaborate each of the previous

components and evaluations in specified details.
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Chapter 4 Cache Coherence Protocols

In this chapter, we describe the traditional protocols (Snooping based protocols
and Directory based protocols) in addition to the Token coherence protocol: how they
are working and what the advantages and disadvantages of each of them are and how

the improvement of these protocols can be done, and in the last section we describe the

output raw simulations results.

4.1 Snooping Protocols

Snooping protocols are mainly focused on observing bus activities and carrying
out the appropriate coherency commands [53]. The bus shows all writes and read
misses. Global memory is moved in blocks, a state is dedicated to each block thus

determining what happens to the entire contents of the block [54]. Figure 4.1 shows the

snooping process.

Each bus device “snoops™ on
the bus for entries in ite cache

Figure 4.1 Snooping Process.
The reliance of snooping protocols on a “bus” or “virtual bus” interconnect are the
primary properties that differentiate snooping protocols from other protocols. Former
multichip processors connected all cores and memory modules in the system by a

shared-wire, multi-drop bus. Snooping protocols make use of such bus-based
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interconnects depending on two bus properties: (1) the visibility of all requests that

appear on the bus are to all components connected to the bus (cores and memory
modules), and (2) the visibility of all requests to all components by a similar total order
(the order in which they gained access to the bus) [55]. Essentially, low-cost atomic
broadcast of requests is provided by a bus.

The processor cores snoop every bus transaction and respond with appropriate
state changes for the corresponding cache lines depending on two elements: the cache
iine status and bus transaction type. Two primary policies classify the snoop-based
coherence protocols: the invalidation-based protocols (e.g., the write-once [56], the
Synapse [57], the Berkeley [58] and the Illinois [65]) and the update-based protocols
(e.g., the Firefly {59] and the Dragon [60}). Usually, the underlying scheme used for the
former two policies is a write-back cache (the original data is not changed at the same
time that changes are made to cached data. Instead, the changed data is marked, and
when the cache data is deallocated, the original data is updated. A write-back operates
faster than a write-through cache whereas changes made to cached data are made to
the original copy at the same time, instead of marking it for later updating). These two
policies differ in whether to invalidate or update the shared cache lines at the time the
processor writes to the same memory block. All the shared cache lines that are held by
other processor cores are invalidated in the invalidation-based protocol, on the other
hand, in all caches that share the same memory block data is updated in the update-
based protocol. Since the performance of each policy depends greatly on the data-
sharing patterns exhibited by the application’s workload; its controversial to argue with
respect to which policy is of a better performance. Most vendors use invalidation-based
strategies as the default protocol as they are considered to be more robust generally

[55]. Hence invalidation-based coherence has been favored over update-based
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coherence protocols in most up-to-date systems (e.g., [17,63,64,65,66,67,68]), this

thesis considers only invalidation-based cache coherence protocols.

The atomic nature of a bus is exploited by some snooping protocols by applying
the previously described abstract MOESI protocols directly. Processor cores begin
coherence transactions by arbitrating for the shared bus in these systems. Once granted
access to the bus, the processor puts its request on the bus, and the bus is listened to or
snooped (hence the name snooping protocol) by all the other processors. The snooping

processors transmit their state and perhaps respond with data (as determined in the

_abstract protocol operation (section 2.3.2)). The memory specifies the correct response

whether to store in the memory the state for each block (the approach used by the
Synapse N-+1 [57] as described by Archibald and Baer [69]) or to observe the snoop
responses generated by the processors.' No other processor is allowed to initiate a
request until the requesting processor receives its data response (completing its

coherence transaction).

Snooping protocols have presented many evolutionary improvements to these
atomic-transaction system designs in order to increase effective system bandwidth.
Split-transaction designs pipeline allow for a more efficient bus usage thus is done by
permitting 2 bus release by the requesting processor while waiting for its response. In
order to reduplicate available bandwidth; systems also take on multiple address-
interleaved buses and separate data-response interconnects (buses or unordered point-to-
point interconnects). Exploiting point-to-point links, dedicated switch chips, and
distributed arbitration allow the avoidance of the electrical limitations of shared-wire

buses entirely and implement a virtual bus thus in more aggressive systems. But these

! The state in memory or snoop response also determines if a requesting processor should transition to

SHARED or EXCLUSIVE on a read request.
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virtual-bus systems still depend on totally-ordered broadcasts in the issuance of

requests. NUmCrous snooping systems take on fhes (echniques to ercate high-
bandwidth systems with dozens of processors although each of these enhancements
adds considerable complexity (e.g., Sun’s UltraEnterprise servers [64,65,70,71]).

A bus connected to all L1 caches is exploited by snoopy based cache coherence
protocol. In this mechanism, for every L1 cache misses, a coherence message is
allocated in the global state that is in L2 cache that is connected to bus and all other L1
caches keep their cache states and initiate a response to the message if it’s theirs.
Request messages, invalidation messages, intervention messages, data block transfers,
etc are the mainly used messages.[72] Each of the messages relates to communication
between on chips, and some messages are in critical section of low latency needs and
some are not in critical section such as data transfer which doesn’t require low latency .

Wire properties in multicore architecture allow for efficiently improving snoopy
based protocols. These wire properties are of constant improvement and gets a tradeoff
between latency and bandwidth. By varying properties such as wire/width spacing and
repeater size spacing [73] different combination of wires with different latency,
bandwidth and power consumptions can be implemented.

L1 caches have low latency in snoopy based protocol because requests are
transferred directly to the remaining L1 caches, whereas .2 caches, on the other hand,
are of high latencies because requests have to transfer to bus than later to other L1
caches. In snoopy based protocols, total saturation of bus bandwidth occurs when more

cores are embedded.

4.1.1 An Example

Maintaining the coherence requirement mentioned in the prior subsection, two

methods are used: The first one is to make sure that a processor obtains exclusive access
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to a data item before it writes it. Hence, it invalidates other copies on a write; this style

of protocol is called a write invalidate protocol. It is the most common protocol, for

both snooping and directory schemes. Exclusive access makes sure that when the write
occurs no other readable or writable copies of an item are available: The remaining
cached copies of the item are invalidated.

Figure 4.2 illustrates an example of an operating invalidation protocol for a
snooping bus with write-back caches. In order to understand how this protocol ensures
coherence, take into consideration a write followed by a read by another processor: Any
copy exploited by the reading processor has to be invalidated (hence the protocol name),
because the write requires exclusive access. As so, it misses in the cache and is forced to
bring in a new copy of the data, when the read occurs. In a write case, it’s mandatory
that the writing processor obtains exclusive access, forbidding other processors from
being able to write simultaneously. When two processors require writing the same data
simultaneously, only one of them is enabled (we’ll see how we decide who is enabled),
causing the invalidation of the other processor’s copy. In order for the other processor to
finish its write, it must first acquire a new copy of the data, which should contain the
updated value at that moment. By thus, this protocol enforces write serialization.

The invalidate protocol alternative is the updating of all the cached copies of a data item
when that item is written. This type of protocol is called a (write update or write
broadeast protocol). A write update consumes considerably more bandwidth hence the
protocoel is bound to broadcast ail writes to shared cache lines. Because of that, all the
latest multiprocessors and CMP have opted to apply a write invalidate protocol, and for

the rest of the thesis we will focus solely on invalidate protocols.
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Contents of Contents of Contents of

Processor activity Bus activity
Core A’s cache  Core B’s cache memory location X
0
Core A reads X Cache miss for X 0 0
Core B reads X Cache miss for X 0 0 0
Core A writesa 1 to X  Invalidation for X 1 0
Core B reads X Cache miss for X 1 1 1

Figure 4.2: An example of an invalidation protocol working on a snooping bus for a

single cache block (X) with write-back caches.

In this example we suppose that no cache primarily holds X and that the value of

X in memory is 0. The cores and memory contents show the value after the processor

and bus activity have both been finished. A blank stands for no activity or no copy

cached. Core A responds with the value, thus canceling the response from memory,
when the second miss by B occurs. Also, the contents of B’s cache and the memory
contents of X are both updated. This update of memory, which takes place when a block
becomes shared, makes the protocol simple, it is also possible to track the ownership
and force the write back only upon block replacement. This calls for presenting another
state called “owner,” thus explaining that a block is possibly shared, but updating any

other processors and memory when it changes the block or replaces it is the owning

processor’s responsibility.

4.1.2 Advantages of Snooping Protocols

The main present advantage of snoop-based multiprocessors is the low average
miss latency, especially for cache-to-cache misses. The responder knows fast that it has

to send a response because a request is sent directly to all the other processors and
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memory modules in the system. As discussed in Chapter 1, low cache-to-cache miss

latency is of great importance for workloads with considerable amounts of data sharing.
Replying with data from processor caches when possible can reduce the average miss
latency if cache-to-cache misses have lower latency than fetching data from memory
(i.e., 2 memory-to-cache miss). Low-latency memory access is a result of the tightly-
coupled nature of these systems [11].

Formerly, snooping has had two additional advantages, but these advantages are
of as important to current or future systems. First, shared-wire buses used to be cost-
effective interconnects for numerous systems and bus-based coherence offered a
complexity-effective approach to applying cache coherence. Unfortunately, shared-wire
buses will be used by few future high-performance systems because it is difficult to
scale the bandwidth of shared-wire buses. Second, bus-based snooping protocols were
comparatively simple. This advantage that was of great importance in the past is now
much less importance; New snooping protocols that use virtual buses are ofien as
complex or more complex than alternative approaches to coherence. For example, the
need to rcason about the protocol operation in logical (ordered) time, rather than in
physical time is one potential source of subtle complexity in aggressive snooping

protocols.

4.1.3 Disadvantages of Snooping Protocols

The first primary disadvantage of snooping is that—even though system designers
have evolved beyond shared-wire buses—snooping designers are still bound to
choosing intercohnects that can provide virtual-bus behavior (i.e., a total order of
requests) when they choose interconnect. These virtual-bus interconnects could be more
expensive (e.g., by requiring switch chips), may obtain lower bandwidth (e.g., due to a

bottleneck at the root), or might acquire higher latency (since all requests need to reach
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the root).’ On the contrary, an unordered interconnect (such as a directly connected grid

or torus of processors) might have more attractive latency, bandwidth and cost attributes
[11].

The second primary disadvantage is that snooping protocols are still naturally
broadcast-based protocols; i.e., protocols whose bandwidth requirements increase with
the number of processors. This broadcast requirement limits system scalability even
after eliminating the bottleneck of a shared-wire bus or virtual bus. To control this
limitation, recent proposals [74,75,76] aim at reducing the bandwidth requirements of
snooping by using destination-set prediction {(also known as predictive multicast)
instead of broadcasting all requests. These proposals suffer from snooping’s other
disadvantage: They rely on a totally-ordered interconnect, Even though they reduce

request traffic.

4.1.4 Techniques used to improve Snoopy based Cache Coherency
In this section,. we will describe some of the best techniques that can be used to improve
the Snoopy Cache Coherency protocols:

1. 3 wired OR signals: In this technique, when any other cache has a copy of block
besides the requester the first signal is asserted, and when any cache has exclusive copy
of block the second signal given. The third signal is asserted when all snoop actions are
finished on the bus. [3] When the third signal is asserted, the other two signals are
safely examined by the requesting L1 and the L2. Performance can be improved by
implementing these signals using low-latency L-Wires since all of them are on the

critical path.

I A recent proposal [77] attempts to overcome these disadvantages by using timestamps to reorder
messages on an arbitrary unordered interconnect to reestablish a total order of requests; however, this

proposal adds significant complexity 1o the interconnect.
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2. Voting wires is another technique used to enhance snoopy based protocol with low

latencies. Generally cache to cache transfers occur from the data in the modified state,
whereas there is a single supplier. [78] Although, a block can be retrieved from other
cache rather than memory in MESI protocol. Multiple caches share copy voting
mechanism is generally used to provide data therefore voting mechanism works with

low latencies and enhances processor performance.

4.1.5 Implementing Snoopy Cache Coherence
In this section, we will describe the basic implementation technique and the proposed

Snooping Protocol Implementation.

4.1.5.1 Basic Implementation Techniques

Using the bus is the key to applying an invalidate protocol in a small-scale
multichip processor, or another broadcast medium, to carry out invalidates. The
processor maintains bus access and broadcasts the address to be invalidated on the bus
in order to perform invalidation. All processors continuously snoop on the bus,
watching the addresses. The processors check whether the address on the bus is in their
cache. If so, the corresponding data in the cache are invalidated.

When a write to a block that is shared occurs, the writing processor must acquire
bus access to broadcast its invalidation. If two processors try to write shared blocks
simultaneously, when they arbitrate for the bus their attempts to broadcast an invalidate
operation will be serialized. The first processor that acquired bus access will cause the
writing of all other copies of the block to be invalidated. If the processors tried to write
the same block, their writes are also serialized by the bus. One implication of this
scheme is that a write to a shared data item cannot be finished gntil a bus access is

acquired. Either by serializing access to the communication medium or another shared
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structure; all coherence schemes require some method of serializing accesses to the

same cache block.

Allocating a data item when a cache miss occurs is also necessary in addition to
invalidating outstanding copies of a cache block that is being written into. Finding the
recent value of a data item in a write-through cache is rather simple, because all written
data are always sent to the memory, where the most recent value of a data item can
always be obtained. Using write through makes the implementation of cache coherence
simple in a design with adequate memory bandwidth supporting the write traffic from
the processors.

Hence, the latest value of a data item can be in a cache rather than in memory for
a write-back cache, the problem of finding the latest data value is even more complex.
Fortunately, write-back caches the same snooping scheme can be used both for cache
misses and for writes: Each processor snoops every address placed on the bus. If a
processor figures that it acquires a dirty copy of the requested cache block, it provides
that cache block as a respond to the read request and causes the abortion of .memory
access. The additional complexity comes from being bound to retrieve the cache block
from a processor’s cache, which can often take more time than retrieving it from the
shared memory if the processors are in separate chips. Since write-back caches provide
lower requirements for memory bandwidth, they can facilitate for a larger numbers of
faster pfocessors and have been chosen to be the approached used in most
multiprocessors, despite the additional complexity of maintaining coherence. Therefore,
we will examine the implementation of coherence with write-back caches.

In order to apply the process of snooping, normal cache tags can be used, and the
valid bit for each block makes invalidation easy to appls/. Whether caused by an

invalidation or by some other event, read misses are also straightforward because they
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simply depend on the snooping capability. For writes knowing whether any other copies
of the block ar¢ cached is neoessary, because if there are no other cached copies, then

the write has to be located on the bus in a write-back cache. Not sending the write
decreases both the time taken by the write and the required bandwidth.

The cache-address tags must be checked by every bus transaction, which might
interfere with processor cache accesses. Duplicating the tags is a way to reducing this
interference. By directing the snoop requeéts to the L2 cache, the interference can also
be decreased in a multilevel cache, which the processor uses solely when it has a miss in
the L1 cache. In order for this scheme to operate, each entry in the L1 cache must be
present in the L2 cache, a property by the name of inclusion property. If a hit in the L2
cache happens to the snoop, it must then arbitrate for the L1 cache to update the state
and possibly retrieve the data, which requires a stall of the processor normally.
Duplicating the tags of the secondary cache may even be useful sometimes as to further

decrease contention between the processor and the snooping activity.

4.1.5.2 The proposed Snooping Protocol Implementation: SNOOPING

We applied a traditional, but aggressive, MOESI snooping protocol optimized for
migratory sharing [11]. This thesis will use the notation SNOOPING to refer to the
applying of this specific protocol. Our implementation is based on a modern snooping
protocol [64].

A processor injects the request message into the interconnect, in order to issue a
request and the requester waits to see its own request return to it on the interconnect.
This method of issuing requests avoids an explicit global-arbitration mechanism by
permitting the interconnect to determine the exact total order that requests will be

delivered (e.g., an indirect interconnect could order requests at its root). All processors
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will see the requests in the same order due to the total order of requests, allowing each

of them to make a globally consistent decision (much like a shared-wire bus).

The processor logically has the permissions and responsibilities associated with its
new coherence state once it has observed its own request, even though in most cases the
data response will have not arrived yet. This window of vulnerability leads to many
complex race cases.

In order to avoid explicit acknowledgment messages from each processor the total
order of requests is also mandatory. Instead of using explicit acknowledgment
messages, when a requesting processor observes its write request in the total order, it
knows that all other processors have logically invalidated any copies. However, because
the delivery of coherence requests is permitted to be unsynchronized, this invalidation
guarantee only holds in logical time—not physical time. This approach to cache
coherence can provide a sequéntia]ly consistent view of the memory system to the
software, as long as all processors enforce coherence permissions in logical time and
take care not to reorder various types of messages.

Instead of using snooping response combining (as used in many snooping
systems), by maintaining two bits per block in memory SNOOPING avoids the
complexity and latency of snoop response combining. The first bit determines if
responding to requests for the block is the memory’s responsibility (i.e., no other
processor is in OWNED, EXCLUSIVE, or MODIFIED). The second bit determines if
the memory is allowed to respond to a read request for the block with an exclusive-data
response (thus permitting the recipient to transition to EXCLUSIVE). Snoop response

combining avoidance is especially attractive in this protocol due to its non-synchronous
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nature'. These two bits can be encoded by the memory controller using the memory’s

EITOr corTection (ECCZ) bits.
4.2 Directory-based Protocols

Memory 1s distributed among different processors in directory based protocols
and directory is maintained for each such memory. Currently, several Chip
Multiprocessors, as Piranha [79] also use directory protocols in order to maintain cache
coherency. L1 cache misses are sent to L2 caches and a directory which store the status
of block is maintained across each L2 caches. The request goes to home node where the
original data is stored to check whether it has. When request comes from requester node
from another cache, if it is not available the request goes to remote node by home node
and first fetches data from remote node and sends it later on to requester node. Also
write-invalidate-direct based protocol is employed in one of the most common chip
multiprocessors technology we are using, which is core2duo. In directory based
protocol, a coherence message is sent to the directory at the L2 to check the cache line’s
global state, when a request misses is placed in an L1 cache. If there is a clean copy in
the L2 and the request is a READ, it is served by the L2 cache. [55] Otherwise, another
L1 must hold an exclusive copy and the READ request are sent to the exclusive owner,
which provides the data. Although, if any other L1 caches hold a copy of the cache line

in a WRITE request, coherence messages are sent to each of them asking for the

' The “non-synchronous” means that a request does not have to arrive at all destinations in the same
system clock cycle and that this system clock is not bound to being tightly synchronized. We do not use

this term to imply that the implementation of the system will use any sort of asynchronous logic.
? Chen and Hsiao [80] and Peterson and Weldon [81] provide an overview of various error correcting

codes.
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invalidation of their copies and the requesting L1 cache acquires the block in exclusive

state only after all invalidation messages have acknowledged.

4.2.1 An Example:
Figure 4.3 shows an example of Directory based protocol where the home

directory is the central unit and all requests and permissions done by it.

©

(© (@)

Figure 4.3 Directory based protocol example.

Directory protocols target the avoidance of the scalability and interconnection
Iimitations of snooping protocols. Directory protocols predate snooping protocols for a
fact, with Censier and Feautrier [84) and Tang [85] performing early work on directory
protocols in the late 1970s. Systems that use these protocols—also known as distributed
shared memory (DSM) or cache-coherent non-uniform memory access (CC-NUMA)
systems—are preferred when scalability (in the number of processors or cores) is a first-
order design constraint. These protocols often sacrifice fast cache-to-cache misses in
exchange for this scalability, even though these protocols are significantly more scalable

than snooping protocols, Examples of systems that use directory protocols include

Stanford’s DASH [86,87] and FLASH [88], MIT’s Alewife [§9], SGI’s Origin [17], the
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AlphaServer GS320 [90] and GS1280 [91], Sequent’s NUMA-Q [92], Cray’s X1 [93],

and Piranha [79].

The bus-based multiprocessor communicates through a bus and uses a snoop-
based protocol, depending on a broadcast mechanism to invalidate or update the data in
remote caches. Because of that, this basic mechanism is less scalable when accounting
for the number of processors allowed on a single bus because of limited bandwidth and
electrical load (capacitance). This lack of scalability is a main dilemma to the
construction of a large-scale system with more than hundreds or even thousands of
Processors.

During the 1990s, the research on distributed shared memory (DSM) machines
[17,73,79,86,87,88,89,90,92,94,95] focused mainly on scaling beyond the number of
processors that may be kept by a single shared bus. The main memory is distributed
across the entire system, and the DSM uses a shared address space. Because of that, the
data access latency can be different unlike the bus-based machine, based on the location
of the data. The DSM typically employs a directory-based cache coherence protocol
[96] for maintaining cache coherence. The DSM explicitly sends requests to appropriate
processing nodes after looking up the directory through network transactions Instead of
resorting to broadcasting.

DSM’s popularity decreased after the emergence of cluster computing. The
availability of high-speed networks and increasingly powerful commodity
microprocessors is making clusters of computers and networks an appealing solution for
cost-effective parallel computing, even though the DSM machine was the dominant
form of large-scale multiprocessor systems in the 1990s,. Nevertheless, as the
mainstream of future computer architecture research moves towards the many-core

(currently implying over eight processors on a chip) architecture, the directory-based
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cache coherence is taken as a coherence protocol among distributed caches (e.g., L2 or

L3) on a chip.

Avoiding broadcasting requests by only communicating with those processors that
might actually be caching data is one goal of directory-based coherence. To avoid
broadcast, a processor issues a request by sending it only to the home memory module
for the block. The home memory holds a directory that encodes information about the
state, and a superset of processors may be caching each of the blocks in that memory
module (hence the name directory protocol). Home memory uses the directory
information to respond directly with the data and/or forward the request to other
processors, when it recetves a request. For example, if core, sends a write request to the
home memory, the directory state illustrates that no cores hold copies of the data at that
time; the memory responds with the data block and updates the directory state so that it
shows that coreg is now in Modified. Further on, when core; sends a write request for
the same to the memory module, it sends the request to coreq. coreg supplies the data t.o
core; as responce to the forwarded request. A bit vector is the simplest encoding for this
information (one bit per core) for the sharers and a processor identifier (log2 n bits) for
the owner. On the other hand, many researchers have suggested approximate encodings
in order to reduce directory state overheads (e.g., [73,97,98,99,100]). These
approximate encodings may define a superset of sharers to invalidate, but at the same
time must still obtain all processors that could be sharing the block. On the other hand,
numerous directory schemes exploit entries at the memory and caches to form a linked
list of processors sharing the block [101].

The directory also plays a main role in providing a per-block ordering point to
handle conflicting requests or eliminate various protocol races, in addition to tracking

sharers and/or owners of a block. Anytime multiple messages for the same block are
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active in the system at the same time, a protocol may take place. Since the directory

observes all requests fora given block, the order in which requests are processed by the

directory unambiguously determines the order in which these requests will occur in the
system. In order to delay subsequent requests to the same block by queuing or
negatively acknowledging (nacking) requests at the directory while a previous request
for the same block is still active in the system; many directory protocols use multiple
busy states (also known as pending or blocking states). Subsequent requests are only
allowed to proceed past the directory when the first request has complete. When a
request reaches the directory, a simple directory protocol might enter a busy state; a
more optimized protocol enters busy states less frequently. The directory responds or
forwards the request when necessary, and it only clears the busy state at the time the
requester sends the directory an acknowledgment message illustrating the “all clear”
signal. On the contrary, some directory protocols can avoid all busy states, especially
protocols that depend on point-to-point ordering in the interconnect.

The use of explicit invalidation acknowledgment messages to allow requesters to
detect completion of write requests is another important aspect of directory-based cache
coherence. Protocols that use a total order of requests (for all blocks) to enable implicit
acknowledgments unlike snooping, most directory protocols eschew a totally-ordered
interconnect, therefore these protocols should depend on explicit invalidation
acknowledgments.' The directory forwards the request to any potential sharers and/or
the owner at the time a requester issues a write request. When each of these processors
receives the forwarded requests they must send an explicit message to indicate that they

invalidated the block. Having a per-block ordering point (i.e., the directory) is not

"'The AlphaServer GS320 is a notable exception; it uses a totally ordered interconnect to avoid explicit

acknowledgments [73].
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convenient to avoid explicit acknowledgments because for implementing a consistency
model the requester should be acknowledged when its request has been ordered with all
other accesses in the system (not just those for the same block).
The following three characteristics of directory protocols result in both the
advantages and disadvantages of directory protocols (described in the following):
¢ Tracking sharers/owner in a directory.
e Using the directory as a per-block ordering point.

e Explicit acknowledgments—directly.

4.2.2 Advantages of Directory Protocols

Directory protocols’ better scalability than snooping protocols and avoidance of
snooping’s virtual bus interconnect are the two primary advantages of directory
protocols. The most discussed and studied advantage is perhaps the significantly
improved scalability of directory protocols. By only contacting those processors that
might have copies of a cache block (or a small number of additional processors when
using an approximate directory implementation), the traffic in the system grows linearly
wit.h the number of processors. In contrast, the endpoint traffic of broadcasts used in
snooping protocols grows quadratically [11]. Combined with a scalable interconnect
(one whose bandwidth grows linearly with the number of processors), Using directory
protocol the system is permitted to scale to hundreds or thousands of processors.

Two scalability dilemmas are encountered when using large system sizes:

¢ First, the amount of directory state required becomes great concern.

¢ Second, interconnect of reasonable is not truly scalable.
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A deep study of these two problems have been applied extensively, and actual

systems supporting hundreds of processors exist (e.g., the SGI Origin 2000 [17]).
The ability to exploit arbitrary point-to-point interconnects is the second—and
maybe the more important—advantage of directory protocols. The point-to-point

interconnects are generally have high-bandwidth and low-latency [11].

4.2.3 Disadvantages of Directory Protocols

Directory protocols are of two main disadvantages. First, the extra interconnect
traversal and directory access is on the critical path of cache-to-cache misses. Hence the
memory lookup is normally performed simultaneously with the directory lookup
memory-to-cache, misses do not incur a penalty. Directory lookup latency is similar to
that of main memory DRAM in numerous systems, and thus locating this lookup on the
critical path of cache-to-cache misses increases cache-to-cache miss latency
considerably. Although the directory latency can be decreased by using fast SRAM in
order to hold or cache directory information, the extra latency presented by the
additioﬁal interconnect traversal is harder to mitigate. A combination of these two
latencies enhances cache-to-cache miss latency significantly. With the prevalence of
cache-to-cache misses in many important commercial workloads, these higher-latency
cache-to-cache misses might have a dramatical impact on system performance.

The storage and manipulation of directory state could be considered the second—
and perhaps less important—disadvantage of directory protocols. This disadvantage was
present on earlier systems, ones that used dedicated directory storage (SRAM or
DRAM) thus adding to the total system cost. On the other hand, to save directory state
while eliminiating additional storage capacity overhead; numerous modern directory
protocols have used the main system DRAM and reinterpretation of bits used for error

correction codes (ECC) (e.g., the $3mp [103], Alpha 21364 [67], UltraSparc HI [66],
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and Piranha [79,104]). by increasing the number of memory reads and writes [104]

storing these bits in main memory enhances the memory traffic, as Token Coherence

can use a similiar method to hold token counts in main memory [11].

4.2.4 Techniques used to improve directory based protocol
In this section, we will describe some of the best techniques that can be used to improve
the Directory based Cache Coherency protocols:
1: Exclusive Read Request for a block in a shared state
The L2 cache is a clean copy and upon receiving a request from the L1 cache the
L2 cache is going to invalidate the every L1 cache in this approach. Before sending the
data to the processor, The L1 cache will receive an invalidate acknowledgement from
the other L1 caches. Normally the L2 cache requires a hop for the reply and where as it
requires 2 hop’s for an acknowledgment. So the latencies of the Hop and the latency’s
of reply and acknowledgement messages should be of the same value. In this approach
both the acknowledgment and reply messages are sent at the same time via the
corresponding low latency L-wires and low power PW — wires. This approach enhances
the performance and lowers the consumption of power
2: Read request for block in exclusive state
The exclusive owner will receive a read request for the L2 cache sends as the
requesting L1 reccives a copy of data from the L2 cache. The exclusive owner will send
a reply message to the requesting L1 cache pointing out that the data sent by the L2

cache is valid if the exclusive copy is a clean one. If the requesting node requests for

data the exclusive owner will send a copy of data to the requesting L1 cache while
updating the data in the L2 cache. The requesting cache will not go on until it receives a
message from the exclusive owner. Simultaneously the data the I.2-cache sends the data

through slow PW wires.
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An acknowledgement message should be sent to the requester from the exclusive

owner through low bandwidth L-wires if the owner copy is a clean copy, whereas if the
owner copy is a dirty copy then the message should be sent through the B-wires and the
write back to the L2 is done via PW-wires. This approach mainly follows the ways of
improving the performance by sending the prioritized data through the L-wires and the
least prioritized one through PW-wires.

3: The methods of which the “Proximity — Aware coherence” protocols enhances the
performance of a multicore thus by lowering the unnecessary access to the off-chip
memory are described below.

CMP ARCHITECTURE WITH DIRECTORY-BASED COHERENCE: In this
architecture 16 cores were arranged in a 4*4 mesh of tiles and each core holds a private
L1 and L2 instruction and data caches, a network switch that connects to the on-chip
network, a directory controller and an on-chip memory controller thus accessing either
the directory or program memory. A problem of Non-uniform latencies between the
nodes is present in this architecture, in which a nearer node will have a low latency
comparative to that of a distant node with the increase of more no of core’s and because
of wire delays.

Baseline Coherence Protocol for read and write operations: In this protocol only if
there is a read miss in its L2-cache does a requester send a read request to the home
node, and then the home node checks the directory cache to check the coherence state,
If the home node acknowledges that it is sharing the data, it will then ask the local L2-
cache for request. If the home node sees that the block is being shared then it will send
the data from the main memory, alternatively if it is a dirty exclusive read then it will
pass the request on to the remote node and the remote node will forward the most

updated data to the requester and as the home node similarly. [108] The requester will
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send a read-exclusive request to the home node and it will then verify the request by the

requester thus if it is in uncached state, all in case of write operation. If it is in shared
state then the home node passes on an invalidate signal to all the nodes and waits for
their acknowledgement. The request will be forwarded to its owner then the remote
node will pass the data directly on to the requester and an ACK to the home node; if the

requested block is a dirty block.

4.2.4 The proposed Directory Protocol Implementation: DIRECTORY

We apply a directory protocol that we will refer to as DIRECTORY in order to give
a concrete comparison with other coherence protocols. This protocol is a standard full-
map directory protocol inspired by the Origin 2000 [17] and Alpha 21364 [67]). The
directory state is stored in the main memory DRAM [66,67,103,104] by the base
system, but we also asses systems with perfect directory caches by simulating a zero
cycle directory access latency.

We designed Directory as a low-latency directory protocol, therefore whenever
we have to choose between reducing message count or reducing latency, we choose to
reduce latency. No ordering in the interconnect is required in this protocol (not even
point-to-point ordering) and no negative acknowledgments or retries are used, but it
does line up requests at the directory controller by using busy states sometimes. The
directory controller lines up messages on a per-block criterion, allowing the proceeding
for non-busy blocks messages. To prohibit starvation the directory uses per-block fair
queuing.

Each time the directory receives a request it enters a busy state. The busy state
prohibits all subsequent operations on the block if the operation causes a change of
ownership; although, multiple read requests to the same block are permitted to proceed

in parallel thus by exploiting a special busy state that counts the number of parallel
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requests (and unblocks only upon completion of afl the parallel requests). Upon
completion of any operation, a completion message is sent to the directory by the
initiating processor in order to (1) remove the busy state and (2) let the directory know
if the recipient received a clean or migratory data response (so the directory is informed
if the responding processor invoked the migratory sharing optimization). These
additional completion messages create interconnect traffic and increase controller
occupancy; on the other hand, they also allow the supporting of all the MOESI states by
the protocol and optimize for migratory sharing. [11]

Silent eviction of Shared blocks is supported by Directory, although, Modified,
Owned, and Exclusive blocks call for a three-phase eviction process. When the
processor sends a message to the directory asking permission to evict the block, the
process 1s then initiated. As a response to this message the directory sends the processor
an acknowledgment, and the directory switches to a waiting-for-writeback busy state.
The processor sends a writeback message that includes the data (for blocks in Modified
and Owned) or a data-less eviction message (for blocks in Exclusive) when it receives
the acknowledgment. The directory updates memory and &ansitions to a non-busy state
when it receives this message, thus concluding the process.

Our Directory protocol uses the MOESI states, unlike many directory protocols
(e.g., [17,67]) thus being MESI protocols. As illustrated in Section 2.3.2, the Owned
state enables decreasing traffic, but more importantly it can also decrease latency by
permitting the system to source data from the Owned processor instead of fetching it
from memory. when the combination of accessing the directory and one additionél
interconnect traversal is of a higher speed than a DRAM memory lookup, getting data
from the Owner processor is faster than getting data from memory, For example, small

systems with a high speed interconnect and high speed SRAM directory may have a
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more rapid cache-to-cache misses than memory-to-cache misses. Allowing all protocols

to use similar base states is considered another advantage of using an MOESI protocol

thus, making them easier to compare quantitatively.
In the next section, we describe token coherence our third and final coherence

protocol used for comparisons, which is one of the newest and efficient protocols.

4.3 Token-based Protocols

Even though designers and researcher encourage choosing directory protocols
over snooping protocols because of their complexity and design verification, directory
protocols obtain an important disadvantage of performance that must be acknowledged:
directory protocols add indirection latency to cache-to-cache misses. As a solution to
races, all requests are sent to a home node by a directory protocol; the home node then
passes on the request (if needed) or responds with the data from memory. Alternatively,
indirection is avoided by broadcasting all requests to all nodes by a snooping protocol,
thus is done depending on interconnect ordering to facilitate. An extra interconnect
traversal stays on the critical path of some cache misses, even though the additional
indirection latency of a directory protocol may be partially mitigated by using a
directory cache.

The constraint of directory indirection are eremoved without sacrificing either
decoupling of the interconnect from the coherence protocol or decoupling of coherence
from consistency thus is done by using the recently-proposed token coherence protocol
[10,11,12]. Token coherence take on token counting to resolve races without the need to
require home node or an ordered interconnect. Token coherence contains even further

levels of decoupling by separating the correctness substrate from the system’s
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performance policy. The correctness substrate is decoupled further on invoking safety

and avoiding starvation.

Token coherence’s correctness substrate enforces safety by counting the tokens
of each block of memory in the system. Each block in the system has a determined
number of tokens (T). The processor is allowed to read and write the block if its cache
has all T tokens for the block, if a processor’s cache obtains a minimum of one token, it
can read the block (but can’t write it). The processor can neither read nor write the
block if its cache holds no tokens. These token counting rules assure that if one
processor is writing the block, no other processor is reading or writing it. Mainly, it
directly enforces the multiple-reader-single-writer coherence invariant that is
appropriate for allowing the processor to enforce the requested memory consistency
model. These easy rules allow for reasoning about protocol safety in a much more basic
way, and naturally, token coherence does not depend on complicated ordering
properties of the interconnect or the use of a directory home node in resolving races.

Token counting does not ensure that a request is satisfied in the end even though it
ensures safety. Thus, the correctness substrate gives persistent requests to prevent
starvation. The processor initiates a persistent request when it detects possible
starvation. Using a fair arbitration mechanism, the substrate then activates at most one
persistent request per block. Each system node remembers all activated persistent
requests (for example, in a table at each node) and forwards all tokens for the block—
those tokens are present at the time being and received in the future—to the request
initiator. Finally, the initiator performs a memory operation (a load or store instruction)

and deactivates its persistent request when it has the necessary tokens.
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4.3.1 Performance policies

The correctness substrate provides a foundation for implementing many
performance policies. These performance policies are mainly with making the system
fast and bandwidth-efficient, but are not obliged to any correctness responsibilities,
since the substrate is responsible for correctness. This decoupling of responsibility
between the correctness substrate and performance policy enables the enhancement of
performance policies that hold many of the desirable attributes of snooping and
directory protocols. For example, token coherence performance policies have been
developed [11] to approximate an unordered broadcast-based protocol (inspired by
snooping protocols), a bandwidth-efficient performance policy that emulates a directory

protocol, and a predictive hybrid protocol that uses destination-set prediction [75].

4.3.2 Ramifications on design verification

Token coherence perhaps has some additional verification advantages. For
example, Marty et al. [105] used a single-level token coherence protocol in order to
approximate the performance properties of a two-level hierarchical coh‘erence protocol.
Hence, the protocol is flat for correctness but hierarchical for performance. Using token
coherence in this way permits performance benefits of a hierarchical protocol in
combination with the ease of verification of a single-level protocol. Marty et al. [105]
also show that verifying a single-level directory protocol is comparable to the difficulty
of verifying the token coherence correctness substrate. Also, the flexibility provided by

the performance policy should permit a system using a token coherence protocol to be

improved over time without major changes to the correctness substrate.
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4.3.3Token Operation and Implementation

Throughout system initialization, the system assigns a fixed number of tokens for
each block, T. In most implementations, each block will contain an identical number of
tokens. Although, token counting proceeds even if blocks have a different number of
tokens as long as all system elements are acknowledged of how many tokens are present
in each block. The number of tokens for each block (T) is normally at least as much as
the number of processors. Tokens are tracked per block and can be kept in processor
caches, memory modules, coherence messages (in-flight or buffered), and input/output
devices. A coherence message is any message that is sent as a component of the
coherence protocol. We collectively point out to those devices that can hold tokens as
system components. Basically, the block’s home memory module contains all tokens of
a block. Tokens and data are permitted to transfer between system components as long
as the substrate follows the following rules:

1. Conservation of Tokens: Tokens must not be created or destroyed, once the
system is initialized. This rule ensures that tokens are never created or
destroyed by the substrate and enforces the invariant that at all times each

block in the system have T tokens.

2. Write Rule: A system component can only write a block if it holds all T

tokens for that block,

3. Read Rule: A system component can only read a block if it holds at least one

token for that block.

Second and-third rules ensure that a processor cannot write the block while

it’s being simultaneously read by another processor.
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4. Data Transfer Rule: A coherence message must contain data if it contains

one or more tokens. This rule ensures that processors holding tokens maintain

at all times a valid copy of the data block.

In more familiar terms, token possession maps directly to traditional coherence

states (described in Section 2.3.2): holding all T tokens is MODIFIED; one to (T — 1)
tokens are SHARED; and zero tokens are INVALID.
Unlike most coherence protocols, token coherence does not allow silent evictions (i.e.,
evicting the block without sending any messages). On the contrary, many traditional
protocols allow silent evictions of clean (i.e., SHARED and EXCLUSIVE) blocks. Both
token coherence and traditional protocols require writeback messages that contain data
when replacing dirty (i.e., OWNED and MODIFIED) blocks. Our implementation 1is
based on a TOKENB protocol invented by milo [11].

TOKENB protocol focuses on both avording indirection latency for cache-to-cache
misses (like snooping protocols) and not requiring any interconnect ordering (like
directory protocols). One seemingly clear approach is to directly send broadcasts on an
unordered interconnect. The TOKENB achieved by using the following performance

policies to avoid both interconnect ordering and indirection overheads:

¢ Issuing Transient Requests: TOKENB broadcasts all transient requests
(i.e., it sends them to all processors and the home memory for the block). This
policy works in a good way (1) for moderate-sized systems where interconnect

bandwidth 1s plentiful and (2) when racing requests are rare.

¢ Responding to Transient Requests: Components (processors and the

home memory module) react to transient requests as they would in most MOESI
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protocols (as previously described in Section 2.3.2). A component with no tokens

(INVALID) ignores all requests. A component with only non-owner tokens (SHARED)
ignores transient read requests, but responds to a transient write request by sending
all of its tokens in a dataless message (like an invalidation acknowledgment in a
directory protocol). A component with the owner token but not all other tokens
(OWNED) sends the data with one token (usually not the owner token) on a read
request, and it sends the data and all of its tokens on an write request. A component
with all the tokens (MODIFIED or EXCLUSIVE) responds in the same way as a
component in OWNED, with the exception given in the next paragraph.

ToKENB implements a well-known optimization for migratory data to
optimize for common migratory sharing patterns (for more detatls refer to {11]). If a
processor with all tokens has written the block as it received the block, it responds

to read requests by sending data and all tokens (instead of the data and one token).

e Reissuing Requests and Invoking Persistent Requests: the
performance policy reissues the transient request if a transient request was not
finished after a short timeout interval. If the request was still not finished after an
even longer interval, the processor invokes the persistent request mechanism. This
approach allows the occasional race to be handled without the overhead of
persistent requests, but yet it invokes continuous requests soon enough not to waste

bandwidth and time reissuing transient requests frequently.
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4.3.4 TokenB Coherence Example

Raquest to write Delayed Max Tokens

Delaye;; o - 3 Retuest to read

() (b)

e TR R) AL TEAS(R)
120" ‘;E-o& 73
. 5\‘%@)

.......................................

(€

Figure 4.4 TOKENB based protocol example.

Figure 4.4 demonstrate the operation of Token based protocols, Core; firstly have

all tokens, which means Core; can read and write while Coreg and Core; each of them

have zero tokens, which means they cannot read or write. In the first two steps Coreg
request to write by sending two messages to other cores but Core, in third step request
to read and take the token in the fourth step before Corey requests deliver to Core,, at

this time Core; and Core; can only read because they have at minimum one but not all
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tokens. In the fifth step Core, requests arrives to Core, and take all tokens from Core,

but it cannot take write access because Core; has one token, for this reason Corey must

issue its request another time.

4.4 Simulation Results

Tables 4.1 , 4.2 and 4.3 exhibit the basic simulation data for traditional protocols

(Snooping and Directory) and TokenB protocol on GEMS/simics simulator.

We 1llustrate these simple simulation metrics in order to (1) give a short

characterization of our workloads, and (2) give sufficient “raw” data to understand our

preceding performance results (chapterS discusses these data in more details). The

system configuration name is exhibited in the first row of these tables. The second row

illustrates that the number of cycles per transaction metric is worse (larger) for slower

protocols (clearly). The third row shows that the number of misses per transaction is

somewhat stable between different protocols and interconnects (also clearly).

Table 4.1 Snooping Coherence Protocol Results. Simulation data for Snooping

coherence protocol.

configuration - éﬁ;;)ping ‘ Peﬂect L2 'SnoopmgA .ct L2 ‘ noopz T
Cycles / transaction 18,721 u3,735 173,718 715,231 1,639,324 17,567,962
(1.2 misses) / transaction NA 179 NA 3,989 NA 44,710
Instructions / transaction | 53,739 56,798 271,591 399,744 3,363,773  |7,057,801
Cycles / instruction 0.348 D.770 0.640 1.789 0.487 1.072
Misses f (thousand |NA B.15 NA D.98 NA 6.33
instructions)

(endpoint messages) / miss |NA 19.97 NA 18.93 NA 17.65
(interconnect bytes) / miss |NA 269.73 NA 237.91 NA 213.79
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Table 4.2 Directory based Coherence Protocol Results. Simulation data for

Directory coherence protocol.

configuration .;erfect L2 PBncoping |PerfectL2 BSnooping ]Perfect LE Snooping |
Cycles / transaction 18,721 145,634 173,718 789,714 1,639,324 |12,820,209
(L2 misses) / transaction [NA 178 INA 3,993 [NA 49,265
Instructions / transaction 53,739 56,841 271,591 399,507 3,363,773 20,039,730
Cyecles / instruction 0.348 0.803 0.640 1.977 0.487 0.640
Misses / {thousand [NA 3.13 INA 9.99 NA 2.46
instructions)

(endpoint messages) / miss [NA 5.62 [NA 5.02 INA 4.48
(interconnect bytes) / miss {NA 153.82 INA 126.20 NA 106.54

Table 4.3 TOKENB based Coherence Protocol Results. Simulation data

for TOKENB coherence protocol.

configuration ~ Perfect L2 Snooping | Perfect L2 Snooping |Perfect L2 {Snooping
Cycles / transaction 18,721 36,017 173,718 533,460 1,639,324 |5,716,102
(L2 misses) / transaction INA 175 INA 3,792 INA 41,316
Instrucﬁoﬁs / transaction 153,739 55,840 271,591 337,045 DB,363,773 |5,781,223
Cycles / instruction 0.348 0.645 0.640 1.642 0.487 0.989
Misses / (thousand [NA 3.134 INA 11.250 [NA 7.147
instructions)

(endpoint messages) / miss NA 17.72 INA 17.69 INA 17.91
(interconnect bytes) / miss [NA 371.23 INA 328.07 INA 301.90
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Alternatively, some of the data in these tables are unsought for, The number of

instructions per transaction is not stable between configurations for two of our three

workloads. For example, the difference in number of instructions per transaction for
OLTP between TOKENB and DIRECTORY is over a factor of three. Even though the
source of these extra insfructions per transaction is unknown, such a significant increase
is related to the more time spent spinning on contended locks that are obtained more
slowly or more time spent in the idle loop.

Unbounded interconnect link bandwidth are used in all of these simulated
configurations. The “perfect L2” configuration simulates an idealized system in which
all references hit in the second-level cache. The number of cycles executed by all cores
per transaction (i.e., the total runtime in cycles multiplied by the number of cores) is
present in the second row. The four following rows (from up to down) are: second-level
cache misses per transaction, instructions per transaction, cycles per instruction, and
misses per thousand instructions. The two other rows are metrics of system traffic: (1)
endpoint messages per miss and (2) bytes on the interconnect links per miss.

Further details of the results, demonstrations and evaluations are discussed and

analyzed in Chapter 5.

71



© Arabic Digital Library - Yarmouk University

Chapter S Analysis and Evaluations

Because of the varying number of instructions per transaction in the results shown
in tables 4.1, 4.2 and 4.3, normalizing by instruction count can be misleading. As these
tables propose, the number of cycles per instruction (CPI) doesn’t indicate at all times
the actual runtime or throughput. For example, consider OLTP workload: DIRECTORY has
a better (smaller) CPI than SNOOPING (the fifth row of results tables). By only examining
the CPI, one might think that SNOOPING is slower than DIRECTORY. Whereas, the cycles
per transaction row illustrate that SNOOPING is considerably faster than DIRECTORY (by
about a factor of two); the misses per thousand instructions row is skewed as well by the
non-stable number of misses per transaction. Due to these effects, we use cycles per

transaction to be our only metric of performance.

These tables also contain the performance of a perfect second-level cache in
addition to these protocols (SNOOPING, DIRECTORY and TOKENB). In these idealized
simulations, all references hit in the perfect second-level cache. These tables exhibit a
considerable difference between the “perfect L2” configuration and (SNOOPING,
DIRECTORY and TOKENB) protocols in the number of cycles per transaction. For
example, the perfect L2 configuration is almost twice as fast as (SNOOPING, DIRECTORY
and TOKENB) protocols for SPECjbb; for OLTP perfect L2 can be above 5 times faster.
Because the majority of the workloads time is spent in the memory system, and many of

the cache misses are cache-to-cache misses, there is a considerable performance

opportunity for protocols that optimize cache-to-cache misses.
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31 Memory-to-Cache and Cache-to-Cache Misses

A cache-to-cache miss is a miss—caused mostly by accessing shared data—that
requires the data to be supplied by another core’s cache. The cache-to-cache misses are
often present in commercial workloads and their effect on performance is significant.
Figure 5.1 shows the normalized misses per transaction for our three workloads for a

range of cache sizes to support this proposal.

Miss Rate versus L2 Cache Size

N o0 5] . @ | »n N | [ L o = n (4] = [X] o (1] =
@B e £ 2 £ 5 9 a = 2T £ £ 2 @ n 2 < 2 5 D
5 5 v 5 T & g g % ® ® & o 'é 5 5 T o B %
SPECjbb Apache oLYP
BManmory 1o cache misses
BCache to cache misses

Figure 5.1 Miss Rate vs. Cache Size.

Figure 5.1 shows the miss rate in normalized misses per transaction for a range of
second-level cache sizes (256KB to 16MB) is illustrated in this graph. Each bar in this
graph is divided into two segments: memory-to-cache misses and cache-to-cache misses.
These specific results are generated using the SNOOPING protocol (although the results

are mostly independent of a particular protocol and intercornnect).
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This graph gives numerous different insights into our workloads;

+ First, even for systems with large caches, the overall second-level miss rate for
these workloads is significant. For example, for the SNOOPING the miss rate is 3.15-9.98
misses per thousand instructions (as illustrated in Table 4.1). This corresponds to the
average of 100-317 instructions executed between each second-level miss. These misses
have a bad effect on performance; as each second-level miss is hundreds of processor

cycles long,

* Second, the graphs in Figure 5.1 exhibits the pre-sought results that both the
overall number of misses per transaction (total height of each bar) and the memory-to-

cache miss rate decrease as the cache size increases.

+ Third, as cache size increases the number of cache-to-cache misses increases
for a fact. This increase occurs because (1) larger caches don’t eliminate misses caused
by sharing, and (2) larger caches increase the probability another processor is caching
the requested block (this impact is especially present in systems that support the
EXCLUSIVE and OWNED states). For example, in the limit of infinite caches, in a MOESI
protocol only the first access by any processor to a block will be a memory-to-cache
miss and all other misses to that block (by any core) will be cache-to-cache misses.

If cache-to-cache misses are of less frequency than memory-to-cache misses the
increasing cache-to-cache miss rate is a detriment to performance. For such systems,
researchers have proposed decreasing cache-to-cache miss rates by using predictive
invalidation techniques to proactively evict blocks [106,107]. On the contrary, many
snooping protocols and directory protocols with a low-latency directory have faster

cache-to-cache misses than memory-to-cache misses. In similar systems, large caches
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improve performance by transforming memory-to-cache misses into cache-to-cache

misses.

* Fourth, the overall effect of the previous two effects—the increasing number
of cache-to-cache misses and decreasing number of memory-to-cache misses—produce a
large percentage of cache-to-cache misses. 11-21% using 256KB L2 and 52-85% using

16MB of all second-level misses are cache-to-cache misses.
5.2 Indirection and its Effects on Performance

Directory protocols use indirection to avoid broadcast, but this indirection places a
third interconnect traversal and directory access latency on the critical path of cache-to-
cache misses. The decreased performance because of these two sources of overhead for
a range of second-level cache sizes is exhibited in Figure 5.2. We calculated the
contribution of these sources of overhead using three simulations: (1) SNOOPING, (2)
DIRECTORY without interconnect traversal and directory lookup latency, and (3)
DIRECTORY. This experiment uses unbounded link bandwidth to isolate the impacts that
are only due to uncounted miss latency.

In figure 5.2, the orange bar represents runtime of a system with a perfect 1.2
cache. The blue bar represents the runtime of SNOOPING, which suffers from neither
overhead. The red bar represents the runtime of Directory including a third interconnect
traversal rather than Snooping on the critical path of cache-to-cache misses. The green

bar represents the runtime of Directory, which include a third interconnect traversal and

include the impact of directory lookup latency.

! Even though cache hit latency increases frequently with cache size, these simulations use the same cache
hit latency for all cache sizes to isolate the impact of the higher hit rate of larger caches.
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Figure 5.2 Runtime vs. Cache Size. The normalized runtime of three proto-
cols for a range of second-level cache sizes (256KB to 16MB).

As follows from the results in Figure 5.1, both (1) the absolute number of cycles
of overhead and (2) the percentage of the runtime because of indirection increase as
cache size increases. In this specific set of experiments, the directory latency and
interconnect traversal each calculate for approximately half of the runtime overhead.
Although, the relative importance of these two factors relies directly on the relative
latencies of average interconnect latency and directory access latency.

Placing a directory looking and third interconnect traversal on the critical path of
cache-to-cache misses has a magnificent effect on performance. For example, for the
4MB cache configuration, eliminating the DRAM directory lookup using an SRAM
directory results in a protocol that is 5-25% faster; removing only the interconnect
traversal results in a protocol that is 5-70% faster, and removing both overheads results in

a protocol that is 10—110% faster (i.e.,, SNOOPING is 10~110% faster than DIRECTORY
with a DRAM directory).
A simple back-of-an-envelope calculation shows these speeds are reasonable even

though these performance differences seem large. For example, consider OLTP. 65% of

76



© Arabic Digital Library - Yarmouk University

OLTP’s misses are cache-to-cache misses while the memory-to-cache misses are 35%,

For SNOOPING memory-to-cache and cache-to-cache misses are 444 cycles and 296
cycles long, respectively (these latencies were presented in Table 3.1). The average miss
latency for OLTP and SNOOPING is (296 x 0.65) + (444 x 0.35) = 348 cycles. For
DIRECTORY using a DRAM directory the memory-to-cache miss latency is the same
(444 cycles), but the cache-to-cache miss latency increases to 592 cycles. The average
miss latency for OLTP and DIRECTORY is (592 x 0.65) + (444 x 0.35) = 540 cycles. In
this example, DIRECTORY’s average miss latency is 55% more than SNOOPING’s miss
latency. As the majority of the time is spent in the memory system by these workloads
(shown by the large gap between perfect and non-perfect second-level caches), a 55%

increase in average cache miss latency will have a considerable impact on runtime.
5.3 TOKENB versus SNOOPING

Figure 5.3 shows normalized runtime (smaller is better) that TOKENB is faster than

SNOOPING with unlimited bandwidth links by (21-34%).

Runtime: Snooping, Directory and Token
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Figure 5.3 Runtime of SNOOPING, DIRECTORY, and TOKENB, The runtime of

SNOOPING, DIRECTORY, and TOKENB with unbounded link bandwidth.
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TOKENB’s endpoint traffic is similar to or less than SNOOPING while has more

interconnect traffic than SNooriNG. Figure 54 illustrates the endpoint traffic (in
normalized messages per miss received at each endpoint coherence controller), and
Figure 5.5 exhibits the interconnect traffic (in normalized bytes per miss). When
examining only data and non-reissued request traffic, TOKENB and SNOOPING are
practically identical. TOKENB adds some additional traffic overhead (comes from
reissued and persistent requests), but the overhead is small for all three of our
workloads. SNOOPING and TOKENB both use extra traffic for writeback control
messages, but because of the detailed implementation decisions in SNOOPING involving
writeback acknowledgment messages, SNOOPING uses more traffic for writebacks than
TOKENB. SNOOPING sends a writeback request on the ordered interconnect to both the
memory and to itself as a marker message. If it is still the owner of the block, it receives
the marker message and sends the data back to the memory. Ignoring this precise
implementation overhead leads us to conclude that these protocols generate the same

amounts of traffic.
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Figure 5.4 Endpoint Traffic of SNOOPING, DIRECTORY, and TOKENB. The
endpoint traffic (in normalized messages per miss) of SNOOPING, DIRECTORY, and

TOKENB.
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Figure 5.5 Interconnect Traffic of SNOOPING, DIRECTORY, and TOKENB.
The interconnect traffic (in normalized bytes per miss) of SNOOPING, DIRECTORY, and

TOKENB.
5.4 TOKENB versus DIRECTORY

TOKENB is faster than DIRECTORY by (26-124%) even if we eliminate the
directory lookup latency and interconnect traversal from the critical path of cache-to-
cache misses the TOKENB will still faster than DIRECTORY by (7-27%). Figure5.3
illustrates the normalized runtime (smaller is better) with unbounded link bandwidth.

TOKENB is faster than DIRECTORY because it (1) avoids the third interconnect
traversal for cache-to-cache misses, (2) avoids the directory lookup latency (DIRECTORY
only), and (3) eliminates blocking states in the memory controller. TOKENB remains
faster than DIRECTORY by 7-27% even if the directory lookup latency is reduced to 6ns
(to approximate a fast SRAM directory or directory cache)

TOKENB generates bigger endpoint traffic and interconnect traffic than
DIRECTORY. Figure 5.4 shows a traffic breakdown in normalized endpoint messages per
miss (smaller is better) for TOKENB, and DIRECTORY. Figure 5.5 illustrates traffic

regarding interconnect traffic in bytes per miss (smaller is better) for the same protocols.
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These figures show TOKENB generates more traffic than DIRECTORY about three times

more endpoint traffic and interconnect traffic). Thus results in, incredibly higher
bandwidth coherence controllers are required by TOKENB. Luckily, researchers have
suggested several techniques for creating high-bandwidth and low-power coherence
controllers (e.g., [108,109,110]), and these techniques can be readily performed on
Token Coherence.

TOKENB depends on broadcast, which limits its scalability. TOKENB is less
scalable than DIRECTORY, hence DIRECTORY avoids broadcast.

However, as the number of processors increases, TOKENB endpoint bandwidth
improves linearly. The interconnect traffic difference between TOKENB and DIRECTORY
enhances slowly. Thus, TOKENB can operate well for almost up to 64 processors if
bandwidth is rich (by using high-bandwidth links and high-throughput coherence
controllers). On the other hand, TOKENB is not a good choice for larger or more

bandwidth-limited systems.
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Chapter 6 Conclusions and Recommendations for Future Work

6.1 Conclusions

The cache coherence mechanisms are a key element aiming at accomplishing
the goal of proceeding exponential performance growth through widespread thread-
level parallelistn. The available efficient methods and protocols were studied in this
thesis, which were used to achieve cache coherent in multicore architectures. These
protocols (Snooping-based protocols, Directory-based protocols and TOKENB-based
protocols) modeled and evaluated on the simics/GEMS. The weaknesses and strengths
of each protocol were demonstrated and we discussed how the improvement of them

can be done.

TOKENB is both (1) better than SNOOPING and (2) faster than DIRECTORY when
bandwidth is plentiful. TOKENB is better than SNOOPING because it uses the same
amounts of traffic and can outperform SNOOPING by exploiting a faster, unordered
interconnect. As discussed in Chapter 1, such interconnects might as well present high
bandwidth more cheaply by avoiding dedicated switch chips. TOKENB is of a higher
speed than DIRECTORY in bandwidth-rich situations by avoiding placing directory
lookup latency and a third interconnect traversal on the critical path of common cache-
to-cache misses. On the other hand, TOKENB uses a moderate amount of additional
interconnect traffic and considerable more endpoint message bandwidth than
DIRECTORY for small systems. Thus, DIRECTORY performs better than TOKENB in a
bandwidth-constrained situaltion. Although TOKENB is a message-intensive protocol, it

is only one of many possible high performance policies.
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6.2 Recommendations for Future Work

The choice of coherence protocol is as complicated and subtle today as it has
ever been. CMPs will enable even more cost-effective multicore processors by reducing
the number of discrete components in the system.

For the future work, we recommend further modeling for each of the snooping,
Directory, and Token protocols by testing additional benchmarks rather than the three
benchmarks that we use in this thesis, in the same architecture for more accuracy
results.

CMPs may change the design tradeoff between large processor cores (for
highest uniprocessor performance using a large nuﬁber of transistors) and more area-
efficient cores (for moderate per-core performance using dramatically fewer transistors).

Such multi-level and hierarchical coherence protocols often add complexity to
already complex systems. Coherence for Multiple-CMP Systems (hierarchical systems)
and Virtual hierarchies needs evaluation and testing their reliability, scalability and cost
efficiency.

A Multiple-CMP system combines many CMP chips together to form a larger,
shared memory system. These systems will require mechanisms to keep caches coherent
both within CMPs and between CMPs.

Unlike prior multiprocessors built using single-core processors, Multiple-CMP
systems (or M-CMPs) use a CMP as the basic building block. In the short term, vendors

will continue to build modest-sized M-CMPs that continue to support a single, logically

shared memory. However the techniques for doing so present different tradeoffs.
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CC-NUMA
CMP
CPI
CPU
CuU
DRAM
DSM
ECC
FSB
GBs
GEMS
GHz

IPC

L1

L2

L3
L-wires
MA
MB

MESI

APPENDECES

Appendix 1: ABBREVIATIONS

Cache Coherent - Non Uniform Memory Access
Chip Multiprocessor

cycles per instruction

Central Processing Unit

Competitive Update

Dynamic Random Access Memory

Distributed Shared Memory

Error Correction Codes

Front Side Bus

Giga Bytes

General Execution-driven Multiprocessor Simulator
Giga Hertz

Instruction Per Cycle

Kilo Byte

Level 1 cache

Level 2 cache

Level 3 cache

low latency — wires

Multicore Architecture

Mega Byte

Modified, Exclusive, Shared and Invalid
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MHz

MIMD

MOESI
MOSI
MSI

ns
OLTP
OS

PC
PCB
PW — wires
RAM
SLICC
SMP
SRAM
T#

TLB

WI

Mega Hertz

Multiple Instruction Multiplc Data

Modified, Owned, Exclusive, Shared and Invalid
Modified, Owned, Shared and Invalid

Modified, Shared and Invalid

nano second

Online Transaction Processing workload
Operating System

Personal Computer

Printed Circuit Board

low power — wires

Random Access Memory

Specification Language including Cache Coherence

Symmetric Multiprocessor
Static Random Access Memory
Token number

Translation Look-aside Buffer
Write Invalidate

Write Update

98



